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Abstract

Video temporal grounding is an emerging topic aiming to
identify specific clips within videos. In addition to pre-
trained video models, contemporary methods utilize pre-
trained vision-language models (VLM) to capture detailed
characteristics of diverse scenes and objects from video
frames. However, as pre-trained on images, VLM may strug-
gle to distinguish action-sensitive patterns from static ob-
jects, making it necessary to adapt them to specific data
domains for effective feature representation over temporal
grounding. We address two primary challenges to achieve this
goal. Specifically, to mitigate high adaptation costs, we pro-
pose an efficient preliminary in-domain fine-tuning paradigm
for feature adaptation, where downstream-adaptive features
are learned through several pretext tasks. Furthermore, to
integrate action-sensitive information into VLM, we intro-
duce Action-Cue-Injected Temporal Prompt Learning (Act-
Prompt), which injects action cues into the image encoder of
VLM for better discovering action-sensitive patterns. Exten-
sive experiments demonstrate that ActPrompt is an off-the-
shelf training framework that can be effectively applied to
various SOTA methods, resulting in notable improvements.
The complete code used in this study is provided in the sup-
plementary materials.

Introduction
As video has emerged as a dominant medium in our daily
lives, the time-consuming nature of video inspection im-
pedes capturing desired moments or highlights (Yan et al.
2023; Apostolidis et al. 2021). Learning high-quality fea-
ture representations for videos is essential for video tempo-
ral grounding. This task includes two crucial research ar-
eas: video moment retrieval (Zhang et al. 2020b,a; Mun,
Cho, and Han 2020), which focuses on localizing tempo-
ral windows with natural sentences, and video highlight de-
tection (Badamdorj et al. 2022; Wei et al. 2022), aimed
at identifying key segments with highest worthiness. Most
methods (Gao and Xu 2021; Gao et al. 2021; Xiao et al.
2021) employ pre-trained models as the feature extractor,
exhibiting good semantic expressions within their respective
modalities. As shown in Figure 1(a), conventional methods
mainly adopt pre-trained video encoders to capture motions
or actions in the video. Vision-Language Models (VLM) (Jia
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et al. 2021; Radford et al. 2021) are proved to be another cru-
cial type of feature extractors for temporal grounding, due
to their ability to capture detailed characteristics of diverse
scenes or objects (shown in Figure 1(b)). However, being
pre-trained on massive image-text data, VLM tend to focus
on the semantics of static objects. The domain gap between
image datasets used for pre-training and downstream video
datasets may cause VLM to overlook action-sensitive pat-
terns (e.g., objects that are moving or being moved), crucial
for temporal grounding tasks (Hendricks and Nematzadeh
2021). For example, in the video segment in Figure 1, where
a lady is drinking coffee, VLM should focus on the coffee
mug and the hand holding it, as both are crucial objects to
recognize the action of ‘drinking’. Some works (Lei, Berg,
and Bansal 2021; Moon et al. 2023) attempt to compensate
the motion information by fusing VLM features with video
encoder features (shown in Figure 1(c)). We argue that this
late fusion is insufficient for deeply integrating spatial and
temporal information, and the potential of adapting VLM’s
image encoder for recognizing action-sensitive patterns ur-
gently needs to be explored.

However, adapting the pre-trained VLM to domain-
specific video temporal grounding tasks and empowering it
to recognize action-sensitive patterns is non-trivial due to
two major challenges. Firstly, trivial end-to-end fine-tuning
is impractical because it requires training the feature encoder
and the downstream model concurrently on long raw videos,
resulting in extremely high computational overhead. Conse-
quently, we introduce an efficient in-domain feature adap-
tation strategy. This strategy aims to fine-tune VLM’s im-
age encoder using in-domain data to produce more adap-
tive features as a preliminary step before standard down-
stream grounding. Instead of pre-training on external large-
scale datasets that may be out-of-domain, we propose a
novel prompt learning algorithm that only trains a small
fraction of parameters on downstream datasets. Two pre-
text training tasks are jointly proposed to excavate temporal
information, including moment-query pairwise ranking and
moment-query contrastive learning. After efficiently adapt-
ing VLM to downstream tasks through fine-tuning the im-
age encoder, features are then pre-extracted as input to train
downstream task-specific models, which still maintain in-
herent knowledge from VLM.

Secondly, existing pre-trained VLM for video temporal
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Figure 1: Illustration of feature extraction pipelines. The im-
age encoder in VLM can capture more detailed features of
static objects, but may not be able to distinguish action-
sensitive objects from backgrounds. Action cues from other
modalities are necessary to guide the image encoder in rec-
ognizing action-sensitive objects, making it fully utilized.

grounding are designed to encode individual frames and can-
not model motions or actions well, making adaptation to
datasets with rich temporal cues challenging. As a result,
we propose Action-Cue-Injected Temporal Prompt Learn-
ing (ActPrompt), thereby equipping the image encoder with
the capability to model temporal information (shown in Fig-
ure 1(d)). ActPrompt contains two main modules. First, Ac-
tion Cue Injection module (ACI) facilitates VLM to cap-
ture action-sensitive patterns from images under the guid-
ance of action cues from other modalities. Features from the
video encoder and the text encoder are utilized for produc-
ing action cues, which are injected into the image encoder
in the form of prompt embeddings, assisting VLM in focus-
ing on action-sensitive regions in static images. After iden-
tifying action-sensitive visual regions via attention scores
in individual images, we introduce Context-aware Tempo-
ral Prompt Learning (CTPL), which extracts motion features
from a temporal sequence of selected visual regions in con-
secutive frames, considering the temporal context. An addi-
tional adaptor is trained to acquire temporal prompts from
motion features, incorporating temporal knowledge into a
static video frame with minimal computational overhead.

The contributions of our work are summarized as follows.
1) We introduce an efficient in-domain fine-tuning training
strategy for VLM’s image encoder before standard down-
stream grounding. Two pretext training tasks are jointly
proposed to excavate temporal information from in-domain
data. 2) We propose Action-Cue-Injected Temporal Prompt
Learning (ActPrompt) as an off-the-shelf framework to fa-

cilitate VLM modeling actions and motions. ACI assists
VLM in capturing action-related patterns from images via
action cues, while CTPL extracts motion features from vi-
sual regions in the temporal context. 3) Our experiments
on both moment retrieval and highlight detection improve
all baselines and validate the significance of downstream-
adaptive features for video temporal grounding.

Related works
Video temporal grounding
We examine two primary tasks in video temporal grounding:
moment retrieval and highlight detection, comparing them
as distinct variations of a shared problem. For moment re-
trieval, existing studies assume single (Anne Hendricks et al.
2017; Gao et al. 2017) or multiple (Lei et al. 2020) con-
tinuous moments in a video corresponding to a given text
query, typically focused on activities. Furthermore, some
studies (Zhang et al. 2020b, 2019; Xu et al. 2019) attempt
to score generated moment proposals. In contrast, alterna-
tive methods (Mun, Cho, and Han 2020; Li, Guo, and Wang
2021; Xu et al. 2022) directly regress the start and end
boundaries without the need for proposal candidates. For
highlight detection, the existing datasets (Song et al. 2015;
Sun, Farhadi, and Seitz 2014) are typically domain-specific
and query-agnostic, leading to various approaches (Hong
et al. 2020; Xu et al. 2021; Badamdorj et al. 2021) that
treat the task as a scoring problem. To tackle both tasks
concurrently, Moment-DETR (Lei, Berg, and Bansal 2021)
introduces QVHighlights dataset and also presents a modi-
fied version of the detection Transformer to pinpoint query-
relevant moments and their associated saliency scores. Sub-
sequently, other works (Liu et al. 2022; Moon et al. 2023;
Lin et al. 2023; Sun et al. 2024) concentrate on process-
ing multi-modal data based on Transformer-based architec-
tures. Based on these methods, we provide an in-domain
fine-tuning paradigm for VLM to learn adaptive features by
injecting action cues into the image encoder.

Prompt learning
Recent prompt learning methods (Li and Liang 2021; Lester,
Al-Rfou, and Constant 2021; Liu et al. 2021) utilize con-
tinuous contexts to automate prompt engineering and ex-
plore optimal prompts. This paradigm can also be ex-
tended to vision-language models (Radford et al. 2021;
Jia et al. 2021) by recent works (Zhou et al. 2022b,a;
Lu et al. 2022; Zhu et al. 2023). Notably, as a pioneer
work, CoOp (Zhou et al. 2022b) demonstrates that a suit-
able prompt for enhancing the recognition performance of
CLIP can be learned with very few samples. To explore
the potential of learning prompts for visual modality, Vi-
sual Prompt Tuning (VPT) (Jia et al. 2022) introduces only
a minimal set of trainable vectors as prompts, while keep-
ing the model backbone frozen. Other multi-modal prompt
learning approaches (Khattak et al. 2022; Zhao et al. 2024;
Wang et al. 2023) also attempt to enhance the alignment be-
tween representations from vision and text modalities. In-
stead of focusing on classification, we introduce two kinds
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Figure 2: The overall framework of ActPrompt. To capture visual regions related to motions, Action Cue Injection (ACI) injects
video- and verb-guided prompts from other encoders into VLM’s image encoder as action cues. Context-aware Temporal
Prompt Learning (CTPL) selects action-sensitive visual regions from consecutive frames via ACI and groups them to generate
temporal prompt. The output representations are fed into training objectives of pretext tasks including moment-query pairwise
ranking and moment-query contrastive learning for adaption to downstream grounding. The fine-tuned modules are marked
with a red flame pattern, with the other modules frozen.

of novel prompts including action-aware prompt and tempo-
ral prompt for video temporal grounding, aiming to facilitate
VLM modeling motions with prior temporal knowledge.

Method
Overview
In this section, we first provide an overview of the gen-
eral feature extraction paradigm for video temporal ground-
ing, which leverages CLIP (Radford et al. 2021) as the im-
age encoder and text encoder, and SlowFast (Feichtenhofer
et al. 2019) as the video encoder. Given a video consisting
of L clips {c1, c2, ..., cL} and a text query with N words
{w1, w2, ..., wN}, we extract video feature vVt ∈ RDV and
image feature vIt ∈ RDI of the clip ct at the t-th timestamp
using the video encoder and the image encoder respectively.
Notably, the 2D frame c

′

t extracted from ct is used as input of
the image encoder. Additionally, we extract textual feature
ti ∈ RDI of the i-th word token in the text query via the text
encoder, which has the same feature dimension as vIt . The
image feature and the video feature are fused as the video
representation vt ∈ RDI , and then clip-level video repre-
sentations V = {v1, v2, ..., vL} and token-level text repre-
sentations T = {t1, t2, ..., tN} can be used for downstream
tasks. Instead of regularly fine-tuning all encoders in the
above feature extraction pipeline, we propose Action-Cue-
Injected Temporal Prompt Learning (ActPrompt), specifi-
cally for fine-tuning the image encoder in VLM with action
cues from downstream datasets. The overall framework is
illustrated in Figure 2.

Action cue injection
Action cues refer to the signal that indicates an object to
take specific actions or engage in particular behaviors. We

develop Action Cue Injection (ACI) that encapsulates action
cues from other modalities as action-aware prompt, which
are then incorporated into the image encoder to guide it
to focus on visual regions related to motions and actions.
We mainly introduce two types of prompts: video-guided
prompt and verb-guided prompt. We feed the two prompts
into the image encoder separately to produce two represen-
tations of one frame in parallel.

Video-guided prompt Given a specific clip ct, we feed
its video feature vVt from the video encoder into a video-
image coupling function Fvid(·), implemented as a linear
layer, to produce video-guided prompt pvid,t = Fvid(v

V
t ) ∈

RD, where D denotes the dimension of patch embeddings
This prompt is then concatenated with patch embeddings at
the first layer of the image encoder. Through self-attention
in each Transformer layer, this prompt interacts with patch
embeddings and learns to pay more attention to regions with
action patterns through our training objectives.

Verb-guided prompt We leverage a language parsing
tool1 to extract the verb token wv ∈ {w1, w2, ..., wN} from
the text query, where v denotes its index in the word se-
quence. Next, we obtain the embedding associated with
that verb token from each layer of the text encoder as
verb features. As it passes through Transformer layers, the
embedding interacts with other word embeddings via self-
attention, thus complementing semantic contextual informa-
tion, such as action-sensitive objects beyond the verb it-
self. Given the embedding elv of the l-th layer’s output re-
lated to wv , we feed it into a layer-specific verb-image cou-
pling function F l

veb(·), which is also implemented as a linear
layer, to produce verb-guided prompt plveb = F l

veb(e
l
v) ∈

1spaCy: https://spacy.io/
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Figure 3: Illustration of context-aware temporal prompt
learning. We sample the patch with the highest attention
score to the action-sensitive prompt for each frame (left) and
concatenate the sampled patch embeddings from the current
frame and neighboring frames for learning context-aware
temporal prompt (right).

RD. This prompt is then concatenated with patch embed-
dings at the l-th layer of the image encoder. The absence of
subscript t here is because it is not linked to any specific
video frame clip ct. Due to the structural similarity between
the image encoder and the text encoder, the image encoder
can receive supervisory textual signals at each layer.

Consistency learning Despite being generated from dif-
ferent modalities, they are expected to exhibit consistent se-
mantics towards actions, where the patch-wise attention dis-
tribution from them should be close. In this regard, we in-
troduce a consistency loss to reduce the disparity between
patch-wise attention scores derived from the two prompts,
aiming to attain unified concepts without ambiguity. Given
a video containing L clips, we denote the patch-wise atten-
tion map (mean by attention heads) of prompts plvid,t and
plveb at the l-th layer for the t-th frame as Al

vid,t ∈ RNp and
Al

veb ∈ RNp , where Np denotes the number of patches. We
use Mean Square Error (MSE) to measure the difference as
follows:

Lcon =
1

L

L∑
t=1

NL∑
l=1

MSELoss(Al
vid,A

l
veb,t), (1)

where NL denotes the number of Transformer layers.

Context-aware temporal prompt learning
VLM also suffer from a deficiency in modeling temporal in-
formation from consecutive frames. Consequently, we pro-
pose Context-aware Temporal Prompt Learning (CTPL) to
enable VLM to extract temporal information from the cur-
rent frame and its neighboring frames, as shown in Figure
3. We take video-guided prompt as an example, where the
process of applying verb-guided prompt is similar.

Given the concept-consistent attention map Al
vid,t via

ACI, we sample the patch ẽlt with the highest attention score
to the corresponding prompt at the l-th layer in the t-th frame
as ẽlt = El,t[i

∗] ∈ RD, where i∗ = argmaxi A
l
vid,t[i],

and El,t indicates the patch embeddings of the t-th frame
at the l-th layer. After sampling the patch from the cur-
rent image, we concatenate ẽlt with other selected embed-
dings from its previous and subsequent T frames at the first

dimension to form a temporal sequence of patches. Here
we apply a replication padding for boundary frames when
conducting CTPL. We add layer-specific positional embed-
dings P l ∈ R(2T+1)×D to obtain embeddings Ẽl

tem,t =

[ẽlt−T , ..., ẽ
l
t, ..., ẽ

l
t+T ]+P l, where [·, ·] stands for concatena-

tion at the first dimension. Ẽl
tem,t are then fed into an MLP-

based temporal prompt generator Ftem(·) with a residual
shortcut to produce context-aware temporal prompt. Hence,
for the t-th frame at the l-th layer, CTPL obtain the temporal
prompt pltem,t ∈ R(2T+1)×D as pltem,t = Ftem(Ẽl

tem,t) +

Ẽl
tem,t, which is then inserted into the (l+1)-th Transformer

layer with other embeddings. The process is formulated as:

[
x1, p

1
vid, E1

]
= Layer1 ([x0, pvid, E0]) ,[

xl+1, p
l+1
vid , El+1,

]
= Layerl+1

([
xl, p

l
vid, El, p

l
tem

])
,

l = 1, 2, ..., N − 1, (2)

where xl denotes the class embedding at the l-th layer.
Here we emit the subscript t since we conduct the same pro-
cess for all frames. Notably, when using plveb instead of plvid
in Equation 2 during verb-guided prompt injection, we re-
place the output embedding of the (l+1)-th layer at the same
position with plveb, using the new learned prompt embedding
from the output of F l

veb(·) as the input for the next layer.
We consider Equation 2 as the final form for our approach,
wherein ACI and CTPL operate concurrently and mutually
enhance each other. ACI supplies action-aware prompts pvid
and pveb, emphasizing action-sensitive regions with patch-
wise attention. Meanwhile, CTPL utilizes auxiliary cues
from neighboring frames to generate the temporal prompt
ptem, enhancing temporal modeling by considering the tem-
poral context. We then have frame-level video representa-
tions V I

vid = {vIvid,t}Lt=1 based on video-guided prompt and
V I
veb = {vIveb,t}Lt=1 based on verb-guided prompt.

Pretext tasks for adaption to downstream
grounding
To facilitate adapting VLM to video temporal grounding,
we design two pretext tasks as training objectives, includ-
ing moment-query pairwise ranking and moment-query con-
trastive learning. These tasks ensure an improved acquisition
of action-sensitive semantics in aforementioned modules.

Given a moment-query pair (m, q) randomly selected
from a training data batch, to facilitate moment-query pair-
wise ranking, we generate a non-overlap moment from
the same video of m as an intra-video negative sam-
ple mintra−. Furthermore, we identify another moment,
minter−, from other videos in the batch to act as an
inter-video negative moment. This process results in a
quadruple (m+,mintra−,minter−, q), where we rename
the original moment m as m+ to maintain uniformity
in expression format. Each moment in the quadruple
is represented by two sets of frame-level features V I

vid

and V I
veb, obtained by injecting video-guided or verb-

guided prompt in ACI separately. We normalize and av-
erage two sets of frame-level representations of these



Method
Moment Retrieval HD

R1 mAP ≥ Very Good

@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1

CAL (Escorcia et al. 2019) 25.49 11.54 23.40 7.65 9.89 - -
XML (Lei et al. 2020) 41.83 30.35 44.63 31.73 32.14 34.49 55.25
XML+ (Lei et al. 2020) 46.69 33.46 47.89 34.67 34.90 35.38 55.06
UMT (Liu et al. 2022) 56.23 41.18 53.83 37.01 36.12 38.18 59.99
M-DETR (Lei, Berg, and Bansal 2021) 52.89 33.02 54.82 29.40 30.73 35.69 55.60
UniVTG (Lin et al. 2023) 58.86 40.86 57.60 35.59 35.47 38.20 60.96
QD-DETR (Moon et al. 2023) 62.40 44.98 62.52 39.88 39.86 38.94 62.40
TR-DETR (Sun et al. 2024) 64.66 48.96 63.98 43.73 42.62 39.91 63.42

ActPrompt (w/ M-DETR) 59.34 39.75 59.87 34.76 35.71 37.29 59.66
ActPrompt (w/ UniVTG) 60.57 42.22 59.72 37.86 37.65 38.82 62.71
ActPrompt (w/ QD-DETR) 62.58 46.89 62.41 41.42 41.29 40.02 64.46
ActPrompt (w/ TR-DETR) 65.28 49.76 64.91 44.02 43.39 40.72 65.01

Table 1: Jointly moment retrieval and highlight detection results on QVHighlights test split.

moments respectively to obtain moment-level represen-
tations Ṽvid = {ṽ+vid, ṽ

intra−
vid , ṽinter−vid } and Ṽveb =

{ṽ+veb, ṽ
intra−
veb , ṽinter−veb }. Notably, verb-guided prompt pveb

for all moments within the quadruple is generated via verb
features from the text query q. Given the representation of
the text query q, denoted as tq as an anchor, our goal is to
have it aligned closely to the positive moment and far from
the negative ones. As a result, we propose triplet-ranking
loss for moment-query pairwise ranking, formulated as:

Ltri =− log(
exp(sim(ṽ+vid, t

q))∑
ṽ∈Ṽvid

exp(sim(ṽ, tq)))

·
exp(sim(ṽ+veb, t

q))∑
ṽ∈Ṽveb

exp(sim(ṽ, tq)))
), (3)

where sim(·, ·) is the cosine similarity metrics.
Moreover, we conduct moment-query contrastive learn-

ing to align positive pairs using cross-entropy loss. Since
representations associated with verb-guided prompt have al-
ready contained information from the corresponding query
and thus are not suitable for this process, we only leverage
ṽ+vid as the moment-level representation for the positive mo-
ment. The cross-entropy loss is formulated as follows:

Lce = − log
exp(sim(ṽ+vid, t

q))∑
t̃∈Tq

exp(sim(ṽ+vid, t̃))
. (4)

Here Tq denotes the set of query representations within the
batch where tq ∈ Tq .

The total loss function can be expressed as follows:

Ltotal = Lce + α1Ltri + α2Lcon, (5)

where α1 and α2 are coefficients for balancing these losses.
We finally leverage V I

vid as image features for downstream
tasks, since text queries are clip-agnostic and not accessible
during clip-level video feature extraction.

Experiments
Datasets and settings
Datasets QVHighlights (Lei, Berg, and Bansal 2021) is a
public dataset with ground-truth annotations for both mo-
ment retrieval and highlight detection. It contains 10,148
short video segments, each annotated with at least one text
query indicating its relevant moments. Evaluation on the test
split can only be conducted by submitting predictions to the
QVHighlights server, ensuring a fair benchmark. Charades-
STA (Gao et al. 2017) contains 16,128 indoor videos with
an average duration of 30.6 seconds, divided into 12,408
query-interval pairs for training and 3,720 pairs for testing.
TACoS (Regneri et al. 2013) consists of 127 videos with
an average duration of 4.78 minutes, where 75, 27 and 25
videos are for training, validation, and testing.

Evaluation metrics For QVHighlights, we follow official
metrics in (Lei, Berg, and Bansal 2021), where Recall@1
with IoU thresholds 0.5 and 0.7, mAP with IoU thresholds
0.5 and 0.75, and the average mAP over a series of IoU
thresholds are used for moment retrieval. For highlight de-
tection, mAP and HIT@1 are used, where a true positive
clip has a saliency score of Very Good. For Charades-STA
and TACoS, Recall@1 with IoU thresholds 0.3, 0.5 and 0.7,
and mIoU are used following works (Lei, Berg, and Bansal
2021; Moon et al. 2023; Lin et al. 2023; Sun et al. 2024).

Implementation details Following (Lei, Berg, and Bansal
2021; Moon et al. 2023; Lin et al. 2023; Sun et al. 2024), we
leverage CLIP (Radford et al. 2021) (ViT-B/32) as the image
and text encoder, and SlowFast (Feichtenhofer et al. 2019)
(ResNet-50) as the video encoder. We set an initial learning
rate of 0.1 and train our model for 10 epochs. The neigh-
boring frame number is set to T = 1. The coefficients of
loss function are set to α1 = 5 (for TACoS and QVHigh-
lights) or α1 = 10 (for Charades-STA) and α2 = 200. We
use a data ratio of 0.1 for each epoch in a disjoint man-
ner, thus forcing each in-domain sample to be utilized at
our fine-tuning stage. The network is trained using a sin-
gle NVIDIA RTX 3090 GPU, requiring no more than a few



Method Charades-STA TACoS
R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

2D-TAN (Zhang et al. 2020b) 58.76 46.02 27.50 41.25 40.01 27.99 12.92 27.22
VSLNet (Zhang et al. 2020a) 60.30 42.69 24.14 41.58 35.54 23.54 13.15 24.99
M-DETR (Lei, Berg, and Bansal 2021) 65.83 52.07 30.59 45.54 37.97 24.67 11.97 25.49
QD-DETR (Moon et al. 2023) 69.81 57.39 34.78 49.41 42.01 30.56 17.09 28.27
TR-DETR (Sun et al. 2024) 69.58 57.61 33.52 49.87 - - - -
UniVTG (Lin et al. 2023) 70.81 58.01 35.65 50.10 51.44 34.97 17.35 33.60

ActPrompt (w/ M-DETR) 69.27 56.51 33.25 48.73 39.89 26.69 13.65 26.04
ActPrompt (w/ QD-DETR) 72.90 59.95 37.58 51.66 43.41 32.77 19.17 29.43
ActPrompt (w/ TR-DETR) 72.21 59.84 37.32 51.23 - - - -
ActPrompt (w/ UniVTG) 71.59 60.35 38.12 51.31 52.64 36.77 17.12 34.24

Table 2: Moment retrieval results on Charades-STA, and TACoS benchmarks.

hours per specific dataset. The total number of trainable pa-
rameters is 12M, which is relatively small compared to the
86M parameters required to train the entire image encoder.
We introduce several SOTA methods in downstream tasks as
baselines, and conduct our ActPrompt on some of them, in-
cluding Moment-DETR (Lei, Berg, and Bansal 2021), QD-
DETR (Moon et al. 2023), UniVTG (Lin et al. 2023) and
TR-DETR (Sun et al. 2024). All baselines use the same
video and text features on a specific dataset.

Joint moment retrieval and highlight detection
As illustrated in Table 1, we evaluate our approach on the
QVHighlights test split, alongside baselines that use features
from a frozen extractor. Our method has shown remark-
able performance gains and demonstrated superiority in in-
domain fine-tuning. Specifically, results of ActPrompt with
Moment-DETR exhibit a significant improvement, such as
+4.98% Avg. mAP in moment retrieval and +4.06% HIT@1
in highlight detection over frozen features. This validates
that our method guarantees a strong performance bound
for video temporal grounding. Note that the performance
gain of ActPrompt for QD-DETR is minimal at R1@0.5
and even slightly decreases at mAP@0.5. This is because
the grounding performance at an IoU threshold of 0.5 re-
lies mainly on the ability to recognize static patterns for
coarse predictions, an area where QD-DETR already excels.
However, our fine-tuning strategy shows an improvement of
+1.91% at R1@0.7 and +1.54% at mAP@0.75, which sug-
gests that action cues assist in refining predicted bounding
boxes for more accurate grounding. For highlight detection,
the consistent improvement over baselines indicates our en-
hancement in capturing highlight segments. In general, our
fine-tuning strategy significantly improves the state-of-the-
art method, TR-DETR, to a notable extent.

Moment retrieval
In Table 2, we evaluate our method on two widely used mo-
ment retrieval benchmarks, TACoS and Charades-STA. Sim-
ilar to the observation made by QVHighlights, our approach
is still superior to all baselines. This demonstrates once more
the effectiveness of our in-domain fine-tuning strategy. Our
high-quality features have resulted in significant improve-
ments, leading to a considerable increase in the mIoU i.e.,

Objective Prompt QVH. Cha. TAC.
Lce Ltri Lcon Vani. Act. Tem. HIT@1 mIoU mIoU

- - - - - - 61.98 49.41 28.27

✓ ✓ 62.01 49.63 28.36
✓ ✓ 62.64 49.94 28.64
✓ ✓ ✓ 62.87 50.67 29.13
✓ ✓ ✓ ✓ 63.20 50.93 29.25
✓ ✓ ✓ ✓ ✓ 64.02 51.66 29.43

Table 3: Analysis on model components. We choose QD-
DETR as baseline and conduct experiments with differ-
ent combinations. For QVHighlights, we report results on
validation split due to the server’s submission limitation
(the same for following ablations). “Vani” indicates vanilla
prompt learning introduced in VPT (Jia et al. 2022).

+3.19% in Charades-STA for Moment-DETR and +1.16%
in TACoS for QD-DETR. However, it is worth mentioning
that the overall improvement over Charades-STA is greater
than that of TACoS. Instead of videos with fixed scenes in
TACoS, Charades-STA has videos with more diverse content
and potential background disturbance, making it hard to rec-
ognize action-sensitive semantics. The deficiency in captur-
ing non-static patterns has been effectively addressed with
the guidance of action cues.

Ablation studies

Analysis on model components. In Table 3, we investi-
gate the influence of model components of our ActPrompt
mainly from two aspects: the type of objectives and prompts.
From an objective perspective, all loss functions positively
impact the results, especially when complemented by the
action-aware prompt. Regarding different prompts, it is ev-
ident that our action-aware prompt, learned through ACI,
is more effective in temporal localization than the vanilla
prompt, underscoring the importance of incorporating action
cues into images. Moreover, the temporal prompt, learned
from the temporal context through CTPL, significantly con-
tributes to the improvement. However, the fixed scenes in
TACoS somewhat hinder the recognition of useful motion
information, leading to relatively smaller improvements.



Figure 4: Visualization of joint moment retrieval and highlight detection on QVHighlights over various baselines and their
variants with our ActPrompt.

Fine-Tuning QVH. Cha. TAC.
Method HIT@1 mIoU mIoU

Frozen 61.98 49.41 28.27

Video 62.73 49.63 28.01
Adapter (Houlsby et al. 2019) 63.23 50.38 28.91
VPT (Jia et al. 2022) 63.04 50.50 28.66
ActPrompt (Ours) 64.02 51.66 29.43

Table 4: Analysis on fine-tuning methods.
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Figure 5: Visualization of attention maps from frozen
CLIP’s image encoder and in-domain fine-tuned encoder.

Analysis on other fine-tuning methods. We compare
our in-domain fine-tuning method against other fine-tuning
approaches on Transformer-based image encoders. The
Adapter (Houlsby et al. 2019) method introduces a bottle-
neck with relatively few parameters compared to the origi-
nal model. VPT (Jia et al. 2022) adds a minimal set of train-
able vectors as prompts at each layer. We also explore the
possibility of fine-tuning the video encoder by appending a
learnable adapter to adjust video features. All experiments
with these methods are conducted using our proposed pre-
text tasks to ensure a fair comparison. As shown in Table 4,
the results highlight the effectiveness of action cues in fine-
tuning the image encoder, significantly outperforming other
methods. In contrast, fine-tuning the video encoder does not

yield significant improvements and may even degrade per-
formance when done concurrently with the image encoder.
This degradation likely occurs because the video encoder is
pre-trained on extensive video data, which is sufficient for
generalizing to downstream tasks. Thus, further fine-tuning
on the downstream dataset can result in overfitting, nega-
tively impacting performance during testing.

Visualization We provide quantitative visualizations on
QVHighlights for various baselines and their variants incor-
porating our ActPrompt in Figure 4. In moment retrieval, we
observe that ActPrompt enhances the baselines by provid-
ing more accurate moment predictions, even correcting com-
pletely incorrect predictions made by UniVTG. In highlight
detection, ActPrompt consistently predicts lower saliency
scores for non-relevant clips compared to the baselines. We
attribute this to ActPrompt’s sensitivity to changes in actions
or motions, resulting in improved localization performance.
To further validate ActPrompt’s ability to capture action-
sensitive patterns, we compare the visual disparities between
our image encoder and the frozen image encoder by visualiz-
ing attention maps. We randomly select several frames from
various videos in Charades-STA. As shown in Figure 5, our
method, which incorporates action cues, alleviates the issue
of focusing on action-irrelevant objects, such as faces and
backgrounds, commonly observed in the frozen encoder.

Conclusion
We propose an efficient in-domain fine-tuning training strat-
egy to adapt VLM for downstream video temporal ground-
ing tasks with the assistance of action cues. Our proposed
method, Action-Cue-Injected Temporal Prompt Learning
(ActPrompt), enhances VLM’s ability to capture action-
related patterns, generating high-quality features. However,
there are still some limitations to consider. The efficiency
and effectiveness of the in-domain fine-tuning strategy may
vary across different datasets and task scenarios. Addition-
ally, the performance of ActPrompt in extracting temporal
information is contingent upon the quality and relevance of



the action cues, which may not always be consistent or read-
ily available in all in-domain data. We hope more attention
will be paid to the importance of action cues and better uti-
lize them to improve VLM’s recognition performance on
video comprehension tasks.
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