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Abstract
Prompt learning has become a prevalent strategy for adapting vision-language foundation models
(VLMs) such as CLIP to downstream tasks. With the emergence of large language models (LLMs),
recent studies have explored the potential of using category-related descriptions to enhance prompt
effectiveness. However, conventional descriptions lack explicit structured information necessary to
represent the interconnections among key elements like entities or attributes with relation to a
particular category. Since existing prompt tuning methods give littie consideration to managing struc-
tured knowledge, this paper advocates leveraging LLMs to construct a graph for each description
to prioritize such structured knowledge. Consequently, we propose a novel approach called Hierar-
chical Prompt Tuning (HPT), enabling simultaneous modeling of both structured and conventional
linguistic knowledge. Specifically, we introduce a relationship-guided attention module to capture
pair-wise associations among entities and attributes for low-level prompt learning. In addition, by
incorporating high-level and global-level prompts modeling overall semantics, the proposed hierar-
chical structure forges cross-level interlinks and empowers the model to handle more complex and
long-term relationships. Finally, by enhancing multi-granularity knowledge generation, redesigning
the relationship-driven attention re-weighting module, and incorporating consistent constraints on the
hierarchical text encoder, we propose HPT++, which further improves the performance of HPT. Our
experiments are conducted across a wide range of evaluation settings, including base-to-novel gener-
alization, cross-dataset evaluation, and domain generalization. Extensive results and ablation studies
demonstrate the effectiveness of our methods, which consistently outperform existing SOTA methods.

Keywords: prompt learning, vision-language models, few-shot learning, domain generalization

1 Introduction
Vision-language foundation models (VLMs) (Rad-
ford et al., 2021; Jia et al., 2021) have signif-
icantly advanced in learning transferable repre-
sentations. To effectively explore the potential of1
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Fig. 1 We input a few hand-written instructions into
LLMs to generate human-like category-related descriptions
along with structured graphs based on each description.

them, prompt tuning methods (Zhou et al., 2022;
Zhou et al., 2022; Khattak et al., 2023) learn con-
tinuous vectors, known as prompt vectors, and
incorporate them into the input space, thereby
enhancing the representation capability of the
pre-trained network. However, when faced with
ambiguous category names, models often struggle
to accurately interpret the corresponding visual
concepts, resulting in sub-optimal performance.
Thus, using category names as text input with-
out the assistance of more linguistic knowledge is
an unsatisfactory choice. Recent methods (Zhang
et al., 2023; Pratt et al., 2022; Menon and Von-
drick, 2022) address this issue by employing large
language models (LLMs) (Brown et al., 2020;
AI@Meta, 2024). These methods use hand-written
templates to generate human-like texts enriched
with linguistic knowledge, thereby facilitating
few-shot visual recognition.

In this paper, we propose a novel approach
that enhances natural linguistic descriptions with
structured knowledge representations. We assert
that structured knowledge is essential for prompt
tuning. Specifically, the descriptions of a category
with unstructured knowledge consist of some key
elements, such as entities and attributes, which

define that category. For example, the category
’water lily’ is defined by entities such as ’leaves’,
’blooms’, and ’flowers’, each linked to specific
attributes. Following related work on knowledge
graphs (Tay et al., 2017; Zhang et al., 2021),
we represent these key elements, and their cor-
relations as a graph for semantic understanding.
This graph-based representation offers a more
organized way to present information, enhancing
data comprehension. It also facilitates the dis-
covery of implicit connections that may not be
evident in original descriptions. In this work, we
leverage existing large language models to extract
structured information from vanilla descriptions.
Given a specific category, we feed handcrafted
instructions into LLMs to generate human-like
descriptions and structured relationships within
them, including key elements and their interrela-
tionships, as shown in Figure 1.

However, existing prompt tuning methods
are inadequate for explicitly modeling such
structured knowledge represented as a graph.
To address this issue, we propose Hierarchical
Prompt Tuning (HPT) to incorporate both struc-
tured and conventional linguistic knowledge from
LLMs, enhancing prompt effectiveness hierarchi-
cally. To model complex structured information,
HPT learns hierarchical prompts at different
semantic levels. Specifically, HPT contains low-
level prompts representing relationships among
key elements of the category, high-level prompts
with implicit category-related semantics derived
from descriptions, and global-level prompts with
task- or domain-specific knowledge shared across
categories.

We introduce a relationship-guided attention
module to leverage and model the LLM-generated
pair-wise correspondences among entities and
attributes, where learnable attention-based matri-
ces are integrated into the text encoder. Fur-
thermore, cross-level self-attention is adopted to
model relationships between prompts from differ-
ent levels to handle more complex and long-term
relationships not fully exploited by LLMs. It effec-
tively overcomes the limitations caused by relying
solely on modeling low-level tokens and allowing
for a more comprehensive understanding of the
category.

Our prompts are trained under a dual-path
asymmetric framework (Zhao et al., 2024), where
the prompted image encoder and text encoder
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are learned separately by aligning their output
with the frozen encoder from the other modality.
By replacing the vanilla-prompted text encoder,
which learns only category-agnostic prompts, with
a novel hierarchical prompted text encoder, text
representations align better with corresponding
visual concepts, resulting in superior recognition
performance.

The contributions of our work are summarized
as follows. 1) We raise the consideration that it is
crucial to extract and leverage structured knowl-
edge from descriptions to assist learning prompts.
Thus, we firstly leverage large language models to
generate category-related descriptions along with
corresponding structured relationships. 2) We
propose Hierarchical Prompt Tuning for simul-
taneously modeling both structured and conven-
tional linguistic knowledge. By incorporating both
forms of knowledge, we can enhance prompt effec-
tiveness with more category-related information.
3) Extensive experiments on three commonly used
evaluation settings, including base-to-new gen-
eralization, cross-dataset evaluation and domain
generalization, demonstrate remarkable improve-
ments with our method, better than existing
state-of-the-art methods.

However, some issues with HPT should be
addressed. First, HPT utilizes LLMs to gener-
ate category-related descriptions via handcrafted
prompt templates. However, this method may be
ineffective as it does not guarantee that descrip-
tions will be sufficiently discriminative among
categories. Additionally, HPT models structured
knowledge as matrices and integrates them addi-
tively into attention computation, which is subop-
timal since it treats all relationships of the same
type equally. Furthermore, despite its effective-
ness in modeling linguistic knowledge, hierarchical
prompt learning is prone to overfitting and could
perform poorly when conducting generalization.

To further enhance our model’s performance
beyond that presented in our conference paper
version (Wang et al., 2024), we propose HPT++
in Section 4. Specifically, we refine the knowl-
edge generation process, producing and merg-
ing coarse-grained and fine-grained descriptions
into multi-granularity descriptions for generating
structured graphs with more semantics. Addi-
tionally, we experiment with various methods to
model structured information and re-design the

relationship-driven attention re-weighting mod-
ule, enabling re-weighting of attention maps
according to relationships between key elements
with a predefined ratio. Finally, to avoid over-
fitting in downstream generalization tasks, we
incorporate a consistency constraint between
prompt-tuned and pre-trained text encoders,
where an adaptor is appended to the hierarchi-
cal text encoder to learn robust representations.
These improvements and a comparison to HPT
are validated in Section 5. The code are both avail-
able at https://github.com/Vill-Lab/2024-AAAI-
HPT.

2 Related Work
2.1 Large Language Models
Large Language Models (LLMs) (Brown et al.,
2020; Zhang et al., 2022; Chowdhery et al., 2022;
AI@Meta, 2024; OpenAI, 2023), trained on exten-
sive web-scale datasets, has gained widespread
popularity due to its ability to generate text
resembling human writing and to discern intri-
cate patterns across diverse domains. Leveraging
the vast potential of LLMs, recent studies have
demonstrated their effectiveness in addressing var-
ious vision-language tasks (Chen et al., 2022;
Alayrac et al., 2022; Cheng et al., 2023; Yang
et al., 2022). Additionally, other studies inves-
tigate prompting vision-language models with
LLMs for image classification, continuous learn-
ing, image caption generation, and action under-
standing (Zhang et al., 2023; Li et al., 2022; Wang
et al., 2022). In this study, we aim to leverage
the capabilities of LLMs in the field of image
classification. When prompted with a target cate-
gory, LLMs can generate related descriptions and
corresponding structured relationships.

2.2 Visual-Language Models
Visual-language models (VLMs) have played
a crucial role in advancing open vocabulary
image classification, with CLIP (Radford et al.,
2021) pioneering this domain. Notable approaches
include scaling up models with larger amounts
of data, batch sizes, and model sizes, such as
Align (Jia et al., 2021) and Basic (Pham et al.,
2021); refining objective functions with models
like SLIP (Mu et al., 2022), FILIP (Yao et al.,
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2021), and Lion (Chen et al., 2023); and incorpo-
rating supplementary information during training
using models such as Florence (Yuan et al., 2021),
UniCL (Yang et al., 2022), K-LITE (Shen et al.,
2022), and REACT (Liu et al., 2023). Our study is
motivated by the goal of enhancing CLIP’s capa-
bilities through improved multi-modal prompts.

2.3 Prompt Learning for V-L
Models

Prompt learning originates in natural language
processing (NLP) and aims to enhance inter-
action with large language models (Liu et al.,
2023; Brown et al., 2020; Wei et al., 2022). Some
efforts (Menon and Vondrick, 2022; Pratt et al.,
2022) propose leveraging pre-trained linguistic
knowledge from LLMs to generate prompts,
thereby enhancing vision-language models with-
out requiring additional training or labeling. To
automate prompt engineering and explore opti-
mal prompts, other studies (Rao et al., 2022;
Zhou et al., 2022; Zhou et al., 2022; Lu et al.,
2022) employ learnable text inputs, optimizing
them during training, a process known as prompt
tuning. With the emergence of visual prompt
tuning (VPT) (Jia et al., 2022), recent meth-
ods (Khattak et al., 2023; Zhao et al., 2024) take
a multi-modal approach, applying prompting to
both modalities to improve alignment between
vision and language representations. In contrast to
prior studies, we generate diverse forms of linguis-
tic knowledge and perform hierarchical prompt
tuning based on this knowledge to produce more
robust representations.

3 HPT
3.1 Overall Pipeline
We present the overall pipeline of our frame-
work. As a baseline network, we apply a dual-
path asymmetric network (Zhao et al., 2024) for
prompt tuning with visual-language models. This
network experts in addressing over-fitting issues
of the learned prompts, particularly in few-shot
learning scenarios. To perform prompt tuning
for transformer-like encoders, learnable vectors
are introduced at each Transformer layer’s input
space as prompts. The framework incorporates
a novel asymmetric contrastive loss, training the

prompted image encoder and text encoder sepa-
rately, using the frozen encoder from the coun-
terpart modality as guidance. Specifically, repre-
sentations of prompted and frozen encoders from
different modalities are aligned asymmetrically,
generating two probabilities from the two frozen-
prompted pairs, which are averaged to derive
an overall probability. All three probabilities are
used to calculate the asymmetric loss Lasy for
training, whereas only the overall probability is
utilized during inference, following the previous
work (Zhao et al., 2024).

For a specific category, we initially input a
set of handcrafted templates filled with the cate-
gory name as instruction into LLMs to generate
human-like descriptions. Additionally, we input
the generated descriptions, along with another
instruction, into LLMs to capture the well-
organized structure of each description, which
includes category-related elements such as enti-
ties, attributes, and their relationships. Detailed
exposition is provided in Section Linguistic
Data Generation. Instead of modifying visual
prompts, we focus primarily on prompt tuning
for the text modality. Unlike the vanilla-prompted
text encoder in the previous dual-path asymmet-
ric network, Section Hierarchical Prompt Tun-
ing offers a novel and detailed exploration of the
core structure of this encoder for tuning prompts
across different semantic levels. In particular,
unstructured descriptions are fed into the frozen
encoder, while relationship-guided graphs along
with the corresponding category name are fed into
the novel hierarchical prompted encoder, which
is specifically designed and finetuned for mod-
eling structured information. To effectively cap-
ture the LLM-generated element-wise correspon-
dences, the hierarchical prompted text encoder
integrates a relationship-guided attention mod-
ule, whose detailed implementation will be elab-
orated in Section Relationship-guided Atten-
tion Module.

3.2 Linguistic Data Generation
To acquire linguistic knowledge, we use one of
the most powerful LLMs, ChatGPT (OpenAI,
2023), to generate descriptions with correspond-
ing structured relationships. As shown in Figure 1,
we adopt Nh question templates as the lan-
guage instruction T for LLMs, e.g., “What does a
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Table 1 [CLASS] token and [TYPE] token for 11 image classification datasets. [X] denotes the category name.

Dataset [CLASS] [TYPE]
ImageNet [X] objects
OxfordPets a pet [X] types of pets
Caltech101 [X] objects
DescribableTextures a [X] texture types of texture
EuroSAT [X] types of land in a centered satellite photo
FGVCAircraft a [X] aircraft types of aircraft
Food101 [X] types of food
OxfordFlowers a flower [X] types of flowers
StanfordCars a [X] car types of car
SUN397 a [X] scene types of scenes
UCF101 a person doing [X] types of action

[CLASS] look like among all a [TYPE]?” or “What
are the distinct features of [CLASS] for recogni-
tion among all [TYPE]?”, etc. [CLASS] denotes a
specific category name with a modifier, like “a pet
Abyssinian”. [TYPE] indicates the type of objects
related to the dataset, like “types of pets” for
OxfordPets (Parkhi et al., 2012). A full list of
[CLASS] token and [TYPE] token for all datasets
is illustrated in Table 1. We denote the generated
descriptions from T as D = {di}Nh

i=1, formulated
as:

D = LLM(T ). (1)
For descriptions in D, we design an extra

instruction T
′ to leverage LLMs for produc-

ing structured knowledge, including entities,
attributes, and relationships among them. We
denote the structured knowledge generated from
D as R, expressed as:

R = LLM([T
′
, D]). (2)

Here R = {ri}Nh
i=1, ri = {Ei, Ai, Re2e,i, Re2a,i},

where Ei, Ai, Re2e,i, Re2a,i represent the entity
set, the attribute set, the set of entity-entity
relationships, and the set of entity-attribute rela-
tionships based on description di.

Our method utilizes both descriptions D and
structured knowledge R as the source of category-
related textual information, leading to effective
prompt tuning.

3.3 Hierarchical Prompt Tuning
Given descriptions D and structured knowl-
edge R, we aspire to simultaneously model both
structured and conventional linguistic knowledge.
Therefore, we propose a novel approach called

Hierarchical Prompt Tuning (HPT), which lever-
ages both forms of knowledge for learning prompts
in a hierarchical manner, as shown in Figure
2(b). HPT contains low-level prompts, high-level
prompts, and global-level prompts, respectively
denoted as pl, ph, pg.

Low-Level Prompt
To model pair-wise relationships within a descrip-
tion, we select essential words from this descrip-
tion as the input of the text encoder. Specifically,
for entities in the entity set Ei and attributes in
the attribute set Ai, we simply concatenate them
together as the low-level prompts p0

l for descrip-
tion di and feed them into the first layer of the
encoder. These prompts are seen as nodes in a
relationship-guided graph, whose relationships are
further processed by a novel relationship-guided
attention module.

High-Level Prompt
In order to capture more intricate associations
between individual tokens and the complete
description, we derive high-level prompts ph that
encapsulate the overall semantics of the category
based on a series of descriptions. In detail, we
feed descriptions D into the frozen text encoder.
Instead of simply utilizing representations from
the last layer, we extract the last tokens from each
layer containing rich semantics and feed them into
a learnable prompt generator f , represented as:

pl
h,i = f

(
hl

i

)
, (3)

where hl
i represents the last token of descrip-

tion di at the l-th layer. These tokens are then
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(b) Structure of hierarchical prompted text encoder

Fig. 2 Our HPT applies a dual-path asymmetric network as the framework. Descriptions and relationship-guided graphs
with class names are used as input for the frozen text encoder and the hierarchical prompted text encoder respectively. In the
hierarchical prompted text encoder, we apply three types of prompts, low-level prompts, high-level prompts, and global-level
prompts for hierarchical tuning, and design a relationship-guided attention module for modeling structured knowledge.

concatenated together as the high-level prompts
pl

h = [pl
h,1; ...; pl

h,Nh
] of this category, which are

further integrated into the corresponding layer of
the hierarchical prompted encoder.

Global-Level Prompt
To represent category-shared knowledge pertinent
to the task, we employ the standard approach
for tuning the global-level prompts pg. Instead
of leveraging any form of knowledge, we auto-
matically learn Ng category-agnostic continuous
vectors shared across categories as contexts and
concatenate them with other prompts for each
layer.

Hierarchical Tuning
Based on the above prompts, we conduct the
proposed hierarchical prompt tuning on the hier-
archical prompted text encoder, formulated as[

c1, , , p1
l

]
= L1

([
c, p0

g, p0
h, p0

l

])[
ci, , , pi

l

]
= Li

([
ci−1, pi−1

g , pi−1
h , pi−1

l

])
, (4)

i = 2, 3, ..., N

where c represents the token of the class name. Via
the projection head of the text encoder TextProj,
the final text representation z is acquired by pro-
jecting the text embeddings xN corresponding to

the last token of the last transformer block LN to
a common V-L latent embedding space:

z = TextProj
(
xN

)
. (5)

3.4 Relationship-guided Attention
Module

We introduce a relationship-guided attention
module to model structured knowledge R to cap-
ture pair-wise correspondences among entities and
attributes in a layer-wise manner. For the l-th
layer of a transformer-like encoder, an attention-
based matrix M l is constructed based on gen-
erated relationships from each description. Two
types of scalar values λl

e2e and λl
e2a are learned to

indicate the strength of the relationship of entity-
entity pairs and entity-attribute pairs separately.
We assign the value to the respective element in
the matrix, formulated as:

M l
i,j =

 λl
e2e (wi, wj) ∈ Re2e

λl
e2a (wi, wj) ∈ Re2a

0 otherwise,
(6)

where wi indicates the entity or attribute asso-
ciated with the i-th token in the sequence of
low-level prompts.
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Guided by structured knowledge, the learned
attention-based matrices are integrated into layers
of the text encoder. In practice, we compute the
attention function on a set of queries simultane-
ously, packed together into a matrix Q. The keys
and values are also packed together into matrices
K and V . For the l-th layer, with the attention-
based matrix M l, the output of self-attention is
computed as:

Attentionl(Q, K, V ) = softmax
(

QK⊤ + M l

√
dk

)
V.

(7)
By explicitly adding M l into the calculation of
self-attention, our model explicitly represents rich
structured relationships within each description,
thus enhancing crucial information associated
with the category.

To deal with more intricate relationships,
we include high-level and global-level prompts
for the construction of long-term relationships.
Unlike modeling correspondences with matrices,
we automatically leverage the implicit associa-
tions through cross-level self-attention itself with-
out any manual intervention. This design, as a
hierarchical knowledge modeling approach, blends
holistic semantics from multiple levels with struc-
tured relationships, thereby helping us discover
complex associations that LLMs have failed to
identify.

4 HPT++
4.1 Overall Improvements
HPT, as introduced, can simultaneously model
both structured and conventional linguistic
knowledge. This capability makes it effective
for handling complex and long-term relation-
ships. We next explore several improvements to
the original framework while maintaining the
hierarchical structure. Specifically, in Section
Multi-Granularity Knowledge Generation,
we refine the knowledge generation process by
merging coarse-grained and fine-grained descrip-
tions into multi-granularity descriptions to create
structured graphs with richer semantics. Addi-
tionally, we experiment with various strategies to
model structured information and redesign the
relationship-driven attention re-weighting mod-
ule, allowing attention intensity to be scaled
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Fig. 3 Illustration of multi-granularity knowledge gener-
ation. We firstly compute the similarity between descrip-
tions of different categories, and then generate fine-grained
descriptions for each category based on its closest cat-
egories. We integrate descriptions of both granularities
to produce an overall description with multi-granularity
semantics, which is subsequently used for generating struc-
tured graphs.

based on the generated relationships at a pre-
set ratio. Detailed exposition is provided in
Section Relationship-Driven Attention Re-
Weighting Module. Finally, to avoid overfitting
in downstream generalization tasks, we incorpo-
rate a consistency constraint between hierarchi-
cal prompted and pre-trained text encoders. An
adapter is appended to the top of the hierarchical
prompted text encoder to learn robust and adap-
tive representations, detailed in Section Consis-
tency Constraint on Hierarchical Prompted
Text Encoder.
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4.2 Multi-Granularity Knowledge
Generation

HPT leverages the LLM to generate category-
related descriptions based on handcraft prompt
templates. This approach seems suboptimal since
it does not ensure that the generated descrip-
tions will be sufficiently discriminative to distin-
guish between different categories. For instance,
in FGVCAircraft, the descriptions of categories
such as “737-400”, “737-500”, “737-700”, and
“737-800” all share the characteristic of “a dis-
tinctive ’chin’ fairing under the cockpit,” as these
categories represent different variants of Boeing
737 series. This similarity makes it challenging
for the VLM to correctly identify the category
of an image. To prevent highly similar descrip-
tions among certain categories, we propose multi-
granularity knowledge generation, as shown in
Figure 3.

We firstly compute the similarity between
descriptions of different categories using the
pre-generated descriptions introduced in HPT
(referred to as coarse-grained descriptions) and
then generate fine-grained descriptions for each
category based on its closest categories. Given
Dc

coar = {dc
coar,i}

Nh
i=1 as the coarse-grained

descriptions of the c-th category, we input dc
coar,i

into the frozen text encoder to obtain the cor-
responding text representation hc

i , which is then
normalized to h̃c

i . We average the normalized
representations for the c-th category as h

c =
1

Nh

∑Nh

i=1 h̃c
i . We use cosine distance to find the C

most relevant classes for each category, denoted
as [CLASS]0, ..., [CLASS]C−1. We reuse Nh ques-
tion templates as Tfine, and for each handcrafted
question template, we append “compared with
[CLASS]0, ..., [CLASS]C−1” as Tfine(c) to prompt
the LLM to generate fine-grained descriptions
Dc

fine = {dc
fine,i}

Nh
i=1 for the c-th category distinc-

tive to other similar categories, expressed as:

Dc
fine = LLM(Tfine(c)). (8)

Furthermore, we integrate descriptions of both
granularities to produce a comprehensive descrip-
tion with multi-granularity semantics, which
is subsequently used for generating structured
knowledge. Specifically, we design an instruc-
tion like “Please summarize the following two
descriptions as an overall description of [CLASS]

encompassing all relevant features within these
descriptions: {d1}, {d2}.” as Tover(d1, d2) for the
LLM to output a summarized description. The
process of obtaining the overall description corpus
for the c-th category is represented as:

Dc
over = LLM(Tover(Dc

coar, Dc
fine)). (9)

For descriptions in Dc
over, we revise the

instruction T
′ in HPT to leverage the LLM

for producing structured knowledge in a sim-
pler form, only including relationships. We denote
the relationships generated from Dc

over as Rc
over,

formulated as:

Rc
over = LLM([T

′
, Dc

over]). (10)

Here Rc
over = {rc

i }Nh
i=1, where rc

i represent the
set of relationships based on the description
dc

over,i, including the subject, the verb and the
direct object (or attribute) for each relation-
ship. HPT++ utilizes both descriptions Dover and
structured knowledge Rover as the final corpus
to provide multi-granularity textual information
for each category, leading to effective prompt
tuning. It should be noted that unlike HPT,
HPT++ does not generate entities and attributes
for each description. Instead, it directly takes the
description itself as the input to the hierarchical
prompted text encoder, which is identical to the
frozen text encoder. The tokens in the descrip-
tion serve as the low-level prompt, as they can be
further processed by our proposed relationship-
driven attention re-weighting module using the
generated structured graph as connections.

4.3 Relationship-Driven Attention
Re-Weighting Module

In HPT, relationships are modeled as matrices
and applied additively to attention computation.
We believe this approach is suboptimal, as the
intensity of relationships within the same type
is added equally (i.e., by adding the same scalar
to the attention map). To address this issue,
we investigate different approaches to modeling
the relationship and propose a relationship-driven
attention re-weighting module. Our findings indi-
cate that re-weighting with element-wise multi-
plication enhances recognition performance more
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effectively than simple addition, thereby better
integrating structured knowledge into the model.

During the construction of the re-weighting
matrix M l for the l-th layer of the encoder,
HPT++ uses a preset hyperparameter β to indi-
cate the re-weighting intensity, instead of learning
two scalar values λl

e2e and λl
e2a in HPT. When

β = 0, no re-weighting operations are performed.
As β increases, the attention intensity between
tokens within a relationship is amplified, while
that between tokens without a relationship dimin-
ishes. Based on the given relationship set R, we
assign the value to the respective element in the
matrix, expressed as:

M l
i,j =

{
1 + β (wi, wj) ∈ R

1
1+β otherwise,

(11)

where wi indicates the i-th token in the
sequence of the corresponding description. This
re-weighting method proportionally scales the
attention intensity between tokens, thereby pre-
serving the relative intensity in the original atten-
tion map. We re-formulate Equation 7 as follows:

Attentionl(Q, K, V ) = softmax
(

QK⊤ ⊙ M l

√
dk

)
V.

(12)
We also investigate and experiment with alter-

native re-weighting schemes for comparison, such
as enhancing only the elements related to a
relationship while keeping the other elements
unchanged. Detailed studies can be found in the
experimental section.

4.4 Consistent Constraint on
Hierarchical Prompted Text
Encoder

Although hierarchical prompt learning effectively
models linguistic knowledge, it still faces poten-
tial overfitting issues and exhibits room for
improvement in generalizing to new categories
or domains. Inspired by PromptSRC (Khattak
et al., 2023) and CoPrompt (Roy and Etemad,
2023), we impose a consistency constraint on the
text branch, using cosine similarity between rep-
resentations from the pre-trained and hierarchical
prompted text encoders to regularize our hier-
archical prompts. The asymmetric network men-
tioned earlier aligns the hierarchical text branch

with the pre-trained visual branch, while the con-
sistency constraint aligns it with the pre-trained
text branch. This dual alignment enhances the
robustness and generalization of the learned rep-
resentations by leveraging pre-trained knowledge
from both modalities. Furthermore, to enhance
learning capacity and improve adaptation, we
introduce an adapter ϕ at the top of the hierarchi-
cal prompted text encoder. This adapter consists
of trainable parameters designed to transform
the embedding vector (Gao et al., 2024). The
consistency loss is represented as:

Lc = 1 − ϕ(z) · Θ(t)
∥ϕ(z)∥∥Θ(t)∥ . (13)

Here Θ denotes the pre-trained text encoder and t
stands for the input description. The final training
loss L of HPT++ is obtained by summing the
asymmetric loss and the consistency loss with a
balancing ratio λ, which is formulated as:

L = Lasy + λLc. (14)

5 Experimental Setup
To evaluate our method, we follow the experi-
ment setup established in previous works (Zhou
et al., 2022; Zhou et al., 2022). We first describe
evaluation protocols and datasets, followed by a
discussion on implementation details.

5.1 Evaluation Protocols
5.1.1 Base-to-New Generalization
Aiming to evaluate the generalizability across var-
ious classes, this process involves dividing the
dataset into base (seen) and new (unseen) classes
and then training the model using a small num-
ber of samples from the base classes. Finally, we
evaluate the model’s performance on both base
(few-shot performance) and new (zero-shot per-
formance) classes. Additionally, we calculate the
harmonic mean over the accuracy on both base
and new classes to highlight the generalization
trade-off.

5.1.2 Cross-Dataset Evaluation
This evaluation approach aims to assess the zero-
shot ability of the model on a cross-dataset setup.
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To validate the potential of our approach in
cross-dataset transfer, we train our model on all
ImageNet classes in a few-shot manner and eval-
uate it directly on ten other unseen datasets with
unknown categories in a zero-shot regime.

5.1.3 Domain Generalization
To evaluate the robustness of our method on out-
of-distribution datasets, we consider ImageNet as
the source domain and its other variants as the
target domain. We finetune our model on Ima-
geNet in a few-shot setting and evaluate it on
four variants of ImageNet with identical classes or
subsets while manifesting diverse domain shifts.

5.2 Datasets
For base-to-new generalization and cross-dataset
evaluation, we evaluate the performance of our
method on 11 image recognition datasets, which
cover a wide range of recognition tasks. Specif-
ically, the benchmark includes ImageNet (Deng
et al., 2009) and Caltech101 (Fei-Fei et al.,
2004) for classification on generic objects; Oxford-
Pets (Parkhi et al., 2012), StanfordCars (Krause
et al., 2013), Flowers102 (Nilsback and Zisser-
man, 2008), Food101 (Bossard et al., 2014) and
FGVCAircraft (Maji et al., 2013) for fine-grained
classification; SUN397 (Xiao et al., 2010) for scene
recognition; UCF101 (Soomro et al., 2012) for
action recognition; DTD (Cimpoi et al., 2014) for
texture classification; and finally EuroSAT (Hel-
ber et al., 2019) for satellite imagery recogni-
tion. For domain generalization, we utilize Ima-
geNet as the source dataset and its four variants
as target datasets including ImageNetV2 (Recht
et al., 2019), ImageNet-Sketch (Wang et al.,
2019), ImageNet-A (Hendrycks et al., 2021) and
ImageNet-R (Hendrycks et al., 2021).

5.3 Implementation Details
We apply prompt tuning to the pre-trained CLIP
model (Radford et al., 2021), using ViT-B/16 as
the visual backbone. We employ SGD optimiza-
tion with an initial learning rate of 0.0025 for
base-to-novel generalization and 0.001 for other
tasks, using a batch size of 8. The maximum
number of epochs is set to 10 for base-to-novel
generalization. For other tasks, we train our model
for 3 epochs for HPT and 5 epochs for HPT++.

The length of global-level prompts Ng is set to
2, and the number of descriptions per category
Nh, which also corresponds to the length of high-
level prompts, is set to 5. We randomly select
one description per category to conduct rela-
tionship modeling at each step during training
to optimize memory usage, while leveraging all
Nh descriptions per category for inference. We
use GPT-3.5-turbo (OpenAI, 2023) and Llama-
3-8B (AI@Meta, 2024) as LLMs in our study,
both of which have comparable performance. Our
research on performance related to different LLMs
will be presented in the experimental section.

For HPT++, assuming Nc is the number of
categories in a dataset, we determine the number
of closest categories C for fine-grained description
generation using the following function:

C = ⌊lg(Nc)⌋ + 1. (15)

The re-weighting intensity ratio β is set to 0.2,
and the balancing ratio λ for the training loss
is set to 1. Following prior works, we select 16
shots for training and use the entire test set
for evaluation. For domain generalization and
cross-dataset evaluation, we use the same hyper-
parameters across datasets, avoiding a separate
search in CoPrompt (Roy and Etemad, 2023).

6 Experiments
We evaluate our approach in three general-
ization settings, i.e. base-to-new generalization,
cross-dataset evaluation, and domain generaliza-
tion. We compare its performance with zero-shot
CLIP (Radford et al., 2021) and recent prompt
learning works as strong baselines (Zhou et al.,
2022; Zhou et al., 2022; Zhu et al., 2023; Yao
et al., 2023; Khattak et al., 2023; Zhao et al.,
2024; Roy and Etemad, 2023). In the case of
CLIP, we use handcrafted prompts specifically
designed for each dataset. We further conduct
several ablation experiments and sample analy-
ses to better demonstrate the effectiveness of the
proposed hierarchical prompt tuning.

6.1 Base-to-New Generalization
Table 2 presents the performance of HPT in
base-to-new generalization setting on 11 recogni-
tion datasets. Compared to the state-of-the-art
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Table 4 Comparison with existing methods on domain
generalization. The best results are highlighted in bold
while the second best results are marked with an
underline. Overall, HPT and HPT++ show consistent
improvements on target variant datasets while achieving
high accuracy on the source ImageNet dataset.

Source Target

ImNet V2 S A R Avg.

CLIP 66.73 60.83 46.15 47.77 73.96 57.17
CoOp 71.51 64.20 47.99 49.71 75.21 59.28
CoCoOp 71.02 64.07 48.75 50.63 76.18 59.90
MaPLe 70.72 64.07 49.15 50.90 76.98 60.26
CoPrompt 70.80 64.25 49.43 50.50 77.51 60.42
PromptSRC 71.27 64.35 49.55 50.90 77.80 60.65

HPT 71.72 65.25 49.36 50.85 77.38 60.71
HPT++ 71.81 65.31 49.28 51.18 77.52 60.82

prompt tuning method CoPrompt, HPT demon-
strates comparable performance on base classes,
while HPT++ achieves an improvement across all
metrics on average. Specifically, HPT++ exhibits
a 0.76% increase in average accuracy for new
classes compared to CoPrompt, and a 1.13%
increase over HPT, while maintaining competitive
accuracy on seen classes. When considering both
base and new classes, HPT++ exhibits an abso-
lute average gain of approximately 0.5% in the
harmonic mean over CoPrompt and HPT, achiev-
ing a favorable balance between in-domain and
out-of-domain data. The most significant improve-
ment over other baselines in the harmonic mean is
observed for DTD and EuroSAT. When more lin-
guistic knowledge beyond just category names is
available, our methods demonstrate a significant
improvement.

6.2 Cross-Dataset Evaluation
Table 3 shows the performance comparison
between HPT, HPT++, and existing methods
on cross-dataset evaluation. HPT and HPT++
demonstrate performance comparable to compet-
ing approaches on the ImageNet source dataset
while exhibiting significantly superior generaliza-
tion across most target datasets. Overall, HPT++
achieves the highest average accuracy of 68.02%,
with an average gain of 1.02% over CoPrompt.
Unlike other methods that merely transfer learned
prompt vectors to new tasks, our approach pro-
vides a rich set of category-related knowledge,
coupled with a novel hierarchical prompt learning
strategy for modeling this knowledge. Compared
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Table 5 Ablation study on different prompts in HPT.

Method Global High Low Base New HM

HPT

✓ 84.02 75.20 79.37
✓ ✓ 84.23 75.53 79.64
✓ ✓ 84.05 76.11 79.88
✓ ✓ ✓ 84.32 76.86 80.42

to HPT, HPT++ applies a consistent constraint
on the hierarchical text encoder, resulting in
superior cross-domain performance. However, this
module has adverse effects on some datasets, such
as StanfordCars and Flowers102, where the hier-
archical text encoder alone performs better than
when complemented with pre-trained knowledge.
This observation suggests that adaptive leverag-
ing of pre-trained knowledge is crucial.

6.3 Domain Generalization
We evaluate the direct transferability of HPT
and HPT++ trained on ImageNet to various
out-of-domain datasets and observe consistent
improvements over all existing approaches. As
shown in Table 4, HPT and HPT++ outper-
form PromptSRC on the ImageNet source dataset
as well as out-of-domain datasets in terms of
average accuracy. Compared to HPT, HPT++
performs better on three OOD datasets, except
for ImageNet-Sketch, where the lack of color infor-
mation makes alignment with descriptions more
difficult. Since variant datasets share identical or
overlapping categories with ImageNet, relevant
linguistic knowledge from the source domain can
be easily transferred, aiding in the recognition of
out-of-domain data.

6.4 Ablation Study
Prompts in Hierarchical Prompt Tuning
We conduct an ablation analysis on base-to-
new generalization using various prompt combi-
nations within the proposed hierarchical prompt
tuning framework, as shown in Table 5. The
baseline method is trained using only global-
level prompts. Experimental results demonstrate
that both low-level and high-level prompts pos-
itively impact recognition performance. Notably,
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Fig. 4 Performance of HPT and HPT++ using different
numbers of descriptions.

low-level prompts significantly improve recogni-
tion of new classes, highlighting the effective-
ness of explicitly modeling structured relation-
ships within descriptions, thereby providing addi-
tional context for unfamiliar categories. High-level
prompts also play a crucial role in enhancing
performance by incorporating holistic semantics
to handle more complex relationships. When all
prompts are tuned simultaneously with cross-
level self-attention, our model achieves optimal
performance.

Number of Descriptions
We conduct experiments by varying the num-
ber of descriptions Nh for each category. As
shown in Figure 4, increasing Nh enriches the
knowledge related to a category, which consis-
tently improves recognition accuracy. Notably, the
impact on accuracy is significantly more pro-
nounced for new classes compared to base classes.
This is because, for unseen classes where training
images are unavailable, performance relies primar-
ily on the diversity of linguistic knowledge. We
set Nh = 5 for implementation since the accu-
racy shows negligible improvement when more
knowledge is provided.

HPT++ Improvements
Table 6 shows the contribution of each new
component in our HPT++ model. Since our
proposed multi-granularity knowledge improves
the quality of linguistic knowledge, enhancing
the recognition of corresponding visual seman-
tics, accuracy on both base and novel classes
increases. However, a decrease of 0.15% in base
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Table 6 Ablation study on HPT++ components. We
incrementally add each module to HPT to assess its
contribution to the performance on base-to-new
generalization.

Method Base New

HPT 84.32 76.86
+Multi-Granularity Knowledge 84.36 77.23
+Attention Re-Weighting Module 84.21 77.51
+Consistent Constraint 84.13 77.99

EuroSAT

Caltech101

DTD

FGVCAircraft

Food101

Flowers102StanfordCars

OxfordPets

UCF101

SUN397

ImageNet

84.88

85.76

86.64

87.52

96.38

96.56

96.74

96.92

71.66
72.32

72.98
73.64

39.64 40.08 40.52 40.9690.64
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82.7883.0683.3483.62

80.4
80.6
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81.0
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73.94

74.12

Fine-Grained Coarse-Grained Overall

Fig. 5 Comprehensive comparison of the harmonic mean
of HPT++ leveraging fine-grained knowledge, coarse-
grained knowledge, and overall knowledge with multiple
granularities on 11 image recognition datasets for base-to-
new generalization.

accuracy is observed when the attention re-
weighting module is applied. This improvement
is attributed to replacing the learnable scalar in
HPT with a preset hyperparameter that con-
trols re-weighting intensity, helping to prevent
overfitting on base classes and enhancing general-
ization to new classes. Additionally, by leveraging
pre-trained knowledge, the consistency constraint
further enhances generalization to new classes
with an absolute gain of about 0.5%.

Knowledge from Different Granularities
Given that different knowledge granularities may
capture distinct semantic aspects of a category,
we examine the performance of leveraging var-
ious types of knowledge as sources of linguistic
knowledge for HPT++, as shown in Figure 5. The
performance using the coarse-grained knowledge
is significantly worse than that of the fine-grained
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Fig. 6 Performance of different re-weighting strategies
under various intensities in HPT++. Here “Multiplica-
tion*” indicates only conducting multiplication on interre-
lation elements in the attention map while keeping others
unchanged. We also compare our method with the strategy
employed in HPT, which uses learnable scalars for inten-
sity indication. It is represented by a black dotted line.

one, whereas an overall knowledge that combines
multiple granularities achieves optimal perfor-
mance on 9 out of 11 datasets, with the exceptions
of EuroSAT and Flower102, where incorporat-
ing coarse-grained knowledge into the fine-grained
knowledge may lead to performance degradation.
This finding also demonstrates that generating
knowledge with varying granularities enhances the
quality of linguistic knowledge, thereby improving
the ability to distinguish images across categories.

Choice of Attention Re-Weighting Strategy
We focus primarily on two types of attention-
based re-weighting strategies for relationship
modeling. One strategy adds the relationship-
guided matrix, with identical values to indicate
the relationship, to the attention map, while the
other one uses the matrix as a weight for element-
wise multiplication with the attention map in
Transformer. Figure 6 presents the results under
different re-weighting intensities, where we also
compare our method with the strategy employed
in HPT, which uses learnable scalars for inten-
sity indication. The results indicate that the
element-wise multiplication strategy for relation-
ship modeling significantly outperforms the addi-
tive method, with optimal performance observed
when the intensity is set to 0.2. Instead of merely
enhancing interrelation elements while keeping
others unchanged, we find that reducing the atten-
tion intensity between unrelated tokens in the
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Table 7 Comparison with different LLMs on base-to-new generalization. Here “Avg.” refers to directly averaging the
harmonic mean of all datasets, which differs from the approach used in base-to-novel generalization, where the average
harmonic mean is computed using the average accuracy on base classes and new classes.

LLM Caltech Pets Cars Flowers Food Aircraft SUN DTD Euro UCF ImNet Avg.

HPT Qwen2 96.63 96.65 75.34 86.73 91.00 39.86 80.47 71.85 83.75 83.23 73.87 79.94
HPT GPT-3.5 96.65 96.71 75.57 87.16 91.01 40.28 80.88 72.16 84.82 83.16 74.17 80.23
HPT Llama3 96.56 96.78 75.67 86.54 91.03 40.56 80.68 71.78 84.43 82.76 73.93 80.07

HPT++ Qwen2 96.85 96.85 75.44 85.76 91.10 40.89 81.09 74.35 86.35 83.45 73.97 80.55
HPT++ GPT-3.5 96.83 96.61 75.62 86.28 91.17 41.10 81.23 74.10 87.10 83.25 74.14 80.68
HPT++ Llama3 96.96 96.91 75.59 85.85 91.13 41.33 81.11 74.23 87.36 83.81 74.24 80.77

attention map is also crucial. Furthermore, com-
pared to the learnable matrix in HPT, our method
avoids overfitting to base classes, thereby ensuring
better generalization.

Large Language Models for Knowledge
Generation
Since the performance of LLMs affects the quality
of the generated knowledge, thereby influenc-
ing the experimental results, we conduct abla-
tion experiments on different LLMs, including
the closed-source model GPT-3.5-turbo (Ope-
nAI, 2023) and the open-source models Llama3-
8B (AI@Meta, 2024) and Qwen2-7B (Yang et al.,
2024). As shown in Table 7, each LLM may
demonstrate superior performance on specific
datasets compared to other LLMs, which can be
attributed to the unique characteristics of this
LLM. For example, GPT-3.5 shows a significant
performance advantage over its competitors on
Flowers102 dataset. However, the performance
differences among various LLMs are generally not
substantial, even though the superior performance
of GPT-3.5 compared to other models has been
demonstrated on many language understanding
benchmarks. This suggests a weak correlation
between recognition performance and the perfor-
mance of LLMs, indicating that the latter does
not play a decisive role. This also demonstrates
that our knowledge generation algorithm main-
tains a lower bound on recognition performance,
regardless of the quality of linguistic knowledge.

Sample Analysis
To demonstrate the capability of HPT to capture
category-related semantics, we provide sample
analysis on three randomly selected categories
from Caltech101. Figure 7 presents a compari-
son between our method and the baseline trained
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Fig. 7 Visualization of the top features with the highest
attention scores according to the selected categories.

with the global-level prompts only. We observe
the attention scores between tokens of entities
and attributes from descriptions and the last
token at the last layer of the prompted encoder.
The top four features with the highest scores
are displayed. It proves that HPT is capable of
identifying discriminative visual concepts that sig-
nificantly contribute to image recognition, leading
to a substantial enhancement in the quality of text
representations.

7 Conclusion
In this paper, we assert that utilizing struc-
tured relationships from descriptions to enhance
learning prompts is crucial. Consequently, we gen-
erate human-like descriptions along with their
corresponding structured relationships and intro-
duce hierarchical prompt tuning, a method that
concurrently models both structured and con-
ventional linguistic knowledge to significantly
enhance prompt effectiveness. Our methods,
including HPT and HPT++, demonstrate supe-
rior performance across three generalization tasks.
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We hope that this work will attract greater atten-
tion to the role of structured knowledge in natural
language prompt tuning, facilitating its applica-
tion to a range of tasks beyond classification.
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