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Learning Domain Invariant Prompt for
Vision-Language Models

Cairong Zhao, Yubin Wang, Xinyang Jiang, Yifei Shen, Kaitao Song, Dongsheng Li, and Duoqian Miao

Abstract—Prompt learning stands out as one of the most effi-
cient approaches for adapting powerful vision-language founda-
tional models like CLIP to downstream datasets by tuning learn-
able prompt vectors with very few samples. However, despite its
success in achieving remarkable performance on in-domain data,
prompt learning still faces the significant challenge of effectively
generalizing to novel classes and domains. Some existing methods
address this concern by dynamically generating distinct prompts
for different domains. Yet, they overlook the inherent potential of
prompts to generalize across unseen domains. To address these
limitations, our study introduces an innovative prompt learning
paradigm, called MetaPrompt, aiming to directly learn domain
invariant prompt in few-shot scenarios. To facilitate learning
prompts for image and text inputs independently, we present
a dual-modality prompt tuning network comprising two pairs
of coupled encoders. Our study centers on an alternate episodic
training algorithm to enrich the generalization capacity of the
learned prompts. In contrast to traditional episodic training
algorithms, our approach incorporates both in-domain updates
and domain-split updates in a batch-wise manner. For in-domain
updates, we introduce a novel asymmetric contrastive learning
paradigm, where representations from the pre-trained encoder
assume supervision to regularize prompts from the prompted
encoder. To enhance performance on out-of-domain distribution,
we propose a domain-split optimization on visual prompts for
cross-domain tasks or textual prompts for cross-class tasks
during domain-split updates. Extensive experiments across 11
datasets for base-to-new generalization and 4 datasets for domain
generalization exhibit favorable performance. Compared with
the state-of-the-art method, MetaPrompt achieves an absolute
gain of 1.02% on the overall harmonic mean in base-to-new
generalization and consistently demonstrates superiority over all
benchmarks in domain generalization.

Index Terms—Prompt learning, meta-learning, few-shot learn-
ing, domain generalization.

I. INTRODUCTION

RECENT research in pre-training large Vision-Language
Models (VLM) using web-scale data has shown remark-

able progress in learning transferable representations [47],
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[23]. In contrast to conventional supervised learning ap-
proaches that acquire closed-set visual concepts through dis-
crete labels, these models align images within a shared embed-
ding space using contrastive learning, presenting a promising
prospect for harnessing human language to guide visual recog-
nition tasks. Benefiting from this paradigm, pre-trained vision-
language models can conduct zero-shot or few-shot transfer to
downstream tasks with open-set visual concepts learned from
natural language supervision. Consequently, how to effectively
leverage these powerful foundation models emerges as a
pivotal direction of research. Recent studies [73], [62] have
employed a simple yet effective way to adapt pre-trained
vision-language models to downstream tasks, called prompt-
ing. Manually designing an appropriate prompt constitutes
a nontrivial endeavor due to its inherent ambiguity, thereby
rendering automatic prompt tuning the current mainstream
approach. Drawing inspiration from recent progress in prompt
learning [34], [30], [37] within the domain of natural language
processing, methods like CoOp [73], CoCoOp [62] and MaPLe
[26] learn a set of continuous vectors as the context (i.e.,
prompt vector) with the pre-trained parameters fixed. This ap-
proach leads to noteworthy enhancements even when utilizing
a limited number of training samples.

Despite demonstrating promising performance in i.i.d. sam-
ples, as discussed in prior research [62], prompt learning
still encounters a significant challenge in terms of domain
generalization. Similar to other machine learning methods,
conventional prompt tuning approaches [73] often tend to
overfit the distribution of the training set. When transferred to
unseen domains, the strong generalization capacity of learned
prompt vectors becomes compromised, leading to a substantial
reduction in performance. Even with massive tuning, ensuring
an optimal prompt for downstream tasks remains elusive.
Recently, several methods [62], [71] have addressed this chal-
lenge through the adaptive generation of prompts for different
tokens or domains, known as conditional prompt learning.
Nevertheless, they fall short in enhancing the generalization
ability of learned prompts and cannot enforce the prompts to
generalize to unseen domains.

In this paper, our goal is to explicitly learn the domain
invariant prompt for vision-language models, which is inde-
pendent of the input and exhibits a low bias toward visual
representations of various downstream tasks. Due to the signif-
icant distribution shift, our emphasis is directed towards cross-
domain tasks, wherein the test samples are out-of-domain. As
discussed in previous literature [65], [21], [27], input samples
are composed of attributes (i.e., factors of variation), such as
color, shape, texture, etc., and different domains are defined by
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Fig. 1. Comprehensive comparison of the harmonic mean of previous
methods CoCoOp, MaPLe, and our method MetaPrompt on 11 diverse image
recognition datasets for base-to-new generalization. MetaPrompt surpasses
state-of-the-art methods on 9 of 11 datasets.

different distributions of each attribute. As a result, there exists
a unified meta-domain containing all possible attributes, where
data domains are attribute distributions sampled from this
meta-domain. Under this assumption, our theoretical analysis,
in alignment with [8], demonstrates that tuning prompts via
an episodic training strategy provides a robust generalization
guarantee. Specifically, this approach has the generalization
bound of O(1/

√
N), where N represents the number of tasks,

independent of the sample size within each domain. This
observation drives our proposal of an episodic prompt tuning
method in few-shot scenarios.

Consequently, to better leverage the potency of episodic
training and maintain good performance on unseen domains,
we introduce MetaPrompt, a simple but effective few-shot ap-
proach that generates the domain invariant prompt for vision-
language models. Aiming at addressing the overfitting issue of
prompts learned on in-domain data, we introduce an alternated
episodic training algorithm designed to improve generalization
when applied to out-of-domain data. To facilitate this algo-
rithm, we propose a dual-modality prompt tuning network as
our framework, which learns prompt vectors from both vision
and text modalities, respectively, using two distinct pairs of
coupled encoders.

In contrast to conventional meta-learning-based episodic
training strategies, our alternate algorithm, as a batch-wise
algorithm, performs two distinct updates on a single batch, i.e.
an in-domain update following a domain-split update. During
in-domain updates, a novel asymmetric contrastive learning
paradigm is elaborated, aiming to exploit the robust gener-
alization capacity of the pre-trained vision-language model.
For instance, representations from the pre-trained text encoder
assume guidance for tuning the prompted image encoder with
contrastive learning, and vice versa. To explicitly enhance
the generalization ability of prompts on unseen domains, we

additionally present a domain-split optimization for prompt
tuning. With a modality-specific optimization strategy, we
impose a constraint on visual prompts for cross-domain tasks
and textual prompts for cross-class tasks during domain-
split updates. During training on a specific distribution, this
constraint optimizes prompts for achieving good performance
on out-of-distribution samples.

In this paper, the ability of generalization is evaluated from
two perspectives, new image domains and new class domains.
Our MetaPrompt is applicable for both out-of-domain classes
(i.e., base-to-new generalization) and images (i.e., conven-
tional domain generalization). As shown in Fig. 1, for base-to-
new generalization, MetaPrompt obtains an overall improve-
ment of harmonic mean accuracy by an average gain of 1.02%
over the previous state-of-the-art method MaPLe on 11 image
recognition benchmark datasets. For domain generalization,
our few-shot method achieves comparable performance over
other methods training on full samples and outperforms other
zero-shot or few-shot methods on all domain generalization
benchmark datasets. These experimental results demonstrate
the effectiveness of MetaPrompt and show its superiority in
generalization capacity to other prompt tuning approaches.

The contributions of our work are summarized as follows. 1)
We introduce an innovative prompt learning paradigm, called
MetaPrompt, which directly learns domain invariant prompt
in few-shot scenarios. This paradigm aims to tackle the major
challenge of generalizing to unseen classes or domains in
prompt learning with vision-language models. 2) We present a
dual-modality prompt tuning network comprising two pairs of
coupled encoders to facilitate learning prompts for image and
text inputs independently. 3) We center on an alternate episodic
training algorithm to enrich the generalization capacity of the
learned prompts, which alternates between in-domain updates
and domain-split updates for prompt tuning.

II. RELATED WORK

A. Prompt Learning

Prompt learning emerges from recent advances in natural
language processing. The core idea of prompt learning is to
formalize various tasks [11], [47], [48] to masked language
modeling problems with different prompt templates. A prompt
can be seen as a function of the input tokens, providing
instruction for adapting pre-trained language models such
as BERT [11] or GPT [48] to downstream tasks. Earlier
work [36] has enabled the model to understand the task
and make better predictions by manually designing discrete
natural language prompts. Nonetheless, some hand-crafted
prompt templates prove inappropriate in many cases due to
their inherent ambiguity, while the performance of recognition
remains sensitive to the form of the provided content. Based
on LLMs, some works in the field of multi-modal comprehen-
sion solve this problem by designing or generating discrete
text prompts using answers [29], reasoning questions [53],
and structure-driven contexts [70] instead of vanilla task-
specific templates. However, a paradigm for automated prompt
learning is urgently needed. Recent methods [34], [30], [37]
learn continuous contexts to automate prompt engineering and
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explore optimal prompts, called prompt tuning. This paradigm
can also be applied to vision-language models [47], [23].
Specifically, CoOp [73] demonstrates that a suitable prompt
for improving the recognition performance of CLIP can be
learned with very few samples. CoCoOp [62] extends CoOp
by learning an input-conditional token for each image to
obtain generalizable representations. ProDA [38] captures the
distribution of diverse prompts to handle the varying visual
representations and provides high-quality task-related content
for facilitating recognition. ProGrad [75] aligns the gradient
to the general direction with other parameters frozen, which
prevents prompt tuning from forgetting the general knowledge
learned from VLMs.

While the existing approaches primarily focus on learning
prompts for text modality, they overlook the optimization
of prompts for vision modality. To address this gap, Visual
Prompt Tuning (VPT) [24] achieves remarkable performance
gains with only a minimal set of trainable vectors acting as
prompts, while keeping the model backbone frozen. Drawing
from the previously mentioned approaches, MaPLe [26] intro-
duces a method for multi-modal prompt learning to improve
the alignment between representations from vision and text
modalities. FG-VPL [58] proposes fine-grained visual prompt
learning to induce VLMs to focus on the target object and
capture discriminative visual information. In contrast, based
on a dual-modality prompt tuning network with asymmetric
regularization and domain-split constraint, our method learns
the domain invariant prompt for both modalities with vision-
language models in an end-to-end manner, resulting in better
generalization on image classification.

B. Domain Generalization

Domain generalization refers to learning a robust model
generalized to unseen domains. In this paper, the general-
ization ability of a model is evaluated from the perspectives
of both out-of-domain images and classes, corresponding
to conventional domain generalization and base-to-new gen-
eralization respectively. Conventional domain generalization
mainly evaluates the generalization capacity on unseen image
domains. Many approaches [33], [18], [41], [2] have attempted
to measure the domain gap between images and learn domain
invariant features. In order to acquire a set of parameters ca-
pable of generalizing to unseen domains, several methods [4],
[31] employ meta-learning to simulate domain shift during
training. In this paper, we present a theoretical analysis within
the context of episodic training, focusing on the guarantee of
generalization in the domain generalization scenario.

Recently, another type of generalization task called base-to-
new generalization has emerged, aiming to exploit the general-
ization ability on unseen classes [7], [63], [67], [66]. Conven-
tional methods [22], [17], [64], [25] learn a semantic space
based on auxiliary information. Compared with supervised
learning, CLIP-based methods achieve high generalization per-
formance due to more vital transferring ability. CoCoOp [62]
tackles this generalization problem with conditional prompt
learning. Our study explores the viability of learning the
domain invariant prompt for the pre-trained V-L model CLIP

[47] and introduces the novel concept of conducting episodic
training in an alternate way for the first time.

C. Meta-Learning

Most existing meta-learning approaches focus on few-shot
learning, which can be divided into metric learning methods,
memory network methods, and optimization-based methods.
Metric learning methods [61], [55], [59], [51] learn a similarity
space to extract discriminative meta-features for new classes
efficiently. Memory network methods [40], [42], [44], [52]
store meta-knowledge by memory models when learning seen
tasks and then generalize it to unseen tasks. Optimization-
based methods [14], [50], [15], [49] train meta-optimizer that
enable fast adaption for new tasks. Works like MAML [14],
[1], [16], [74] focus on learning meta-initial parameters of a
deep model so that it would perform well on new tasks after
only a small number of gradient updates. Drawing on recent
advancements, we optimize parameters after every in-domain
update to learn robust representations instead of learning
the initial parameters of the model. In concrete, we utilize
gradients on meta-test subtasks to regularize parameters, i.e.,
prompts. By imposing a modality-specific constraint, our
model performs better on various generalization tasks.

III. GENERALIZATION BOUND OF EPISODIC TRAINING

Following previous literature [65], our theoretical analysis
is based on the assumption that data is composed of attributes
(i.e., factors of variation), such as color, shape, texture, etc.,
and different domains can be defined by different distributions
of attributes. For example, as shown in Fig. 2, a sketch domain
corresponds to a color distribution with only two values, black
and white. In contrast, a cartoon or natural image domain may
correspond to a color distribution with more color values. As
a result, we assume that there exists a unified meta-domain
distribution τ containing all possible attributes, where data
domains P = {Pi}Ni=1 are distributions sampled from this
meta-domain with different attribute distributions. Under this
assumption, we expect a training strategy to learn invariant
features from seen domains and be able to generalize to
unseen domains. Specifically, given a training algorithm F
trained on a dataset D = {Di = Ds

i }
N
i=1, where Ds

i is the
set of data sampled from a support domain, drawn from a
domain distribution PM

i containing M training samples (i.e.,
Ds

i
i.i.d.∼ PM

i ), the generalization error R obtained by F(D)
is as follows:

R(F(D), τ) = EP∼τ,Ds∼PM ,z∼PL(F(D)(Ds), z). (1)

Here z represents an instance sampled from the distribution
of data domains P .

To improve the generalization ability of meta-learning algo-
rithms, the pioneering work [61] proposes a training strategy –
episodic training strategy, which treats each task as a training
instance and updates the inner-task algorithm by episode (task
by task). In this paper, we transfer episodic training to the
domain generalization scenario by treating each data domain
as a training instance and updating the inner-domain algorithm
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Fig. 2. Input samples are composed of attributes (i.e., factors of variation),
such as color, shape, texture, etc., and different domains can be defined by
different distributions of attributes.

by episode (domain by domain). Specifically, we first update
the model on a support domain (i.e., in-domain error). Then the
performance of the updated model is measured and optimized
on another query domain (i.e., out-of-domain error or episodic
training error). As a result, the training error of the episodic
training strategy R̂epi is as follows:

R̂epi(F(D),D) =
1

N

N∑
i=1

1

Nq
i

∑
zi∈Dq

i

L̂(F(Ds
i ), zi), (2)

where Dq
i is the set of data sampled from a query domain,

and Nq
i is the sample number of Dq

i . From Eq. 2 we can
see that episodic training strategy directly minimizes the out-
of-domain testing error, and hence intuitively the in-domain
sample number M in the generalization bound vanishes,
with the generalization bound only depending on the domain
number N .

Based on this paradigm, we naturally associate episodic
training with domain generalization tasks, aiming to learn
invariance from various distributions by creating meta-tasks
with domain gaps as episodes. By applying this strategy, the
distribution shift between the meta-train and meta-test subtask
can be approximately equivalent to that between the original
training and test task. The error of the parameter over the

meta-test task is exactly the test error of generalization tasks
and thereby is an unbiased estimate of the generalization error
on unseen domains. Theoretically, following [8], we derive the
bound of the generalization gap between these two errors only
depending on the domain number N , which is formulated by:

EF[R(F(D), τ)] ≤ EF

[
R̂epi(F(D),D)

]
+O

(
1√
N

)
. (3)

The generalization bound implies a strong generalization
guarantee for episodic training algorithms in the few-shot
regime, which motivates this paper to adopt episodic training
to learn the domain invariant prompt with very few samples.

IV. ALTERNATE EPISODIC TRAINING ALGORITHM

In order to enhance generalization performance on out-
of-domain data, we propose an alternate episodic training
algorithm. To enhance the performance of this algorithm,
we introduce a dual-modality prompt tuning network as the
foundation of our approach. As a batch-wise algorithm, our
approach conducts an in-domain update with an asymmetric
contrastive learning paradigm following a domain-split update
with a modality-specific optimization strategy on each batch.

A. Dual-Modality Prompt Tuning Network

To enhance the effectiveness of episodic training in prompt
tuning and to establish a network that sustains high perfor-
mance across unseen domains, we demonstrate our framework
for prompt tuning on vision-language foundation models, such
as CLIP. Among recent works on prompt tuning, prompt
vectors can be learned for both text encoder [73], [62] and
image encoder [24]. In this section, we first formulate prompt
tuning for text and vision modalities as follows:

a) Textual Prompt Tuning: We follow CoOp [73] that
automatically learns a set of tunable continuous vectors as
context tokens that are fed into the text encoder together
with the class tokens. Instead of introducing prompts only at
the first layer, we expand these vectors at every Transformer
layer’s input space. Given the textual prompt composed of
P vectors for the i-th class denoted as ti, the prediction
probability of the i-th class can be calculated by:

pt(y = i | x) = exp (sim (x, g (ti)) /τ)∑K
j=1 exp (sim (x, g (tj)) /τ)

, (4)

where x represents the image representation from the image
encoder and g(·) denotes the text encoder.

b) Visual Prompt Tuning: We follow VPT-Deep [24] that
adopts a similar idea as textual prompt, where extra prompt
vectors are automatically learned to be fed into the image
encoder. The image patches are firstly embedded into a latent
space as the input of the first Transformer layer, and then P
learnable vectors are introduced at every Transformer layer’s
input space as prompts. The output of the Transformer head
is considered the final image representation x̃. The prediction
probability of the i-th class can be calculated by:

pi(y = i | x) = exp (sim (x̃, g (hi)) /τ)∑K
j=1 exp (sim (x̃, g (hj)) /τ)

, (5)
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Fig. 3. Our dual-modality prompt tuning network consists of a pre-trained encoder and a prompted encoder for each modality, where we further couple the
prompted encoder with the pre-trained encoder from the relative modality. The asymmetric contrastive learning module outputs three probability distributions
for the end-to-end training to achieve better recognition performance, where po is used for the final prediction.

where g(·) denotes the text encoder and hi denotes the
handcrafted prompt for the i-th class.

Motivated by previous works on textual and visual prompt
tuning, we propose a dual-modality prompt tuning network
that jointly learns visual and textual prompts for better recog-
nition performance with in-domain data. As shown in Fig.
3, unlike methods [26], [69] that learn two sets of prompt
vectors on a single pair of encoders with cross-entropy loss,
we couple each prompted encoder with a pre-trained encoder
from the relative modality. By leveraging representations from
pre-trained encoders as regularization, the generalization abil-
ity of learned prompts can be promised, thereby mitigating
the overfitting issue on in-domain data. More details of the
implementation will be discussed in the following section.

B. Asymmetric Contrastive Learning for In-Domain Updates
To achieve good performance on in-domain training samples

while preventing the learned prompt vectors from the over-
fitting issue (especially in a few-shot setting), we propose a
novel asymmetric contrastive learning paradigm for in-domain
updates. This paradigm employs representations from the pre-
trained encoder, renowned for its robust transferability, to serve
as guidance for enhancing the generalization ability of prompts
in the prompted encoder. Specifically, instead of concurrently
training prompted encoders from both modalities in a single
pair using cross-entropy loss, we opt for independent training,
where prompted representations of one modality are aligned
with pre-trained ones of another modality, as shown in Fig. 3.

With this asymmetric contrastive learning paradigm, we
have two probabilities pt and pi, corresponding to textual and

visual prompts with Eq. 4 and Eq. 5. We average them to
obtain an overall probability po. In the training phase, we em-
ploy the cross-entropy loss to minimize the distance between
the ground-truth label y and three probabilities pt, pi and po.
We denote the losses associated with these probabilities as
Lt, Li and Lo, respectively. As a result, the final asymmetric
contrastive loss function LAC can be expressed as the sum of
three losses:

LAC = Lo + Lt + Li. (6)

During inference, the probability po is used for prediction.

C. Domain-Split Optimization for Domain-Split Updates

Motivated by the analysis from Section III, we propose a
domain-split optimization strategy for prompt tuning. Based on
the generalization bound derived from Eq. 3, the generalization
gap only depends on the domain number N , which indicates
the feasibility of conducting meta-updates by splitting samples
according to their domains. Compared with in-domain updates
which focus on learning robust representations with asym-
metric regularization using full in-domain samples, domain-
split updates explicitly enhance the generalization capacity on
the out-of-domain distribution based on meta-learning. The
performance of this update is only related to the characteristics
of the dataset itself instead of the amount of training samples.
Given a batch of training data containing samples from various
domains generated from the meta-domain, we split it into a
support set and a query set based on domains. Our domain-
split optimization aims to regularize learnable prompts with a
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constraint that narrows the gap between training errors on the
support and query set.

Specifically, given a batch of N datasets sampled from N
domains at the t-th time step denoted as Dt = {Di}Ni=1, where
Di ∼ Pi and Pi indicates the distribution of the i-th data
domains, we split the set by grouping samples from some se-
lected domains as the query set Dq

j , and samples from the rest
as the support set Ds

j , where the index j denotes the j-th split.
Note that, for domain generalization, since it is clear which
domain each sample belongs to, the query and support set
can be easily split. However, for base-to-new generalization,
there is no explicit definition of which domain each sample
belongs to. Hence, we randomly split the query and support set
based on the class label of each sample. By imposing various
separations, we provide a unified episodic generation paradigm
for different generalization tasks, as shown in Fig. 4.

Based on our dual-modality prompt tuning network, we
propose a modality-specific optimization strategy, where the
prompts of only the task-specific modality are tuned during
domain-split updates. For example, when conducting base-to-
new generalization on Flowers102, differentiating between the
semantics of flower names such as “pink primrose” and “hard-
leaved pocket orchid” becomes crucial. This underscores the
necessity of tuning invariant textual prompts to accommodate
diverse classes within the topic of flowers. On the other
hand, in the context of domain generalization tasks, utilizing
invariant visual prompts to extract common semantics across
diverse domains enhances recognition performance. Based on
the aforementioned, we apply constraints on visual prompts
concerning cross-domain tasks with Li and on textual prompts

concerning cross-class tasks with Lt.
During domain-split updates, the learnable prompt θ from

the task-specific modality is updated with the samples on the
support set Ds

j to get the updated prompt θ′j . Then the gen-
eralization error of the updated prompt θ′j is measured by the
cross-entropy loss on the query set Dq

j , whose corresponding
gradients are back-propagated to update the original prompt θ.
Since this update involves second-order gradient computation
with high complexity, in our implementation, we design a first-
order approximating method. The parameter θ is updated as
follows:

θ ← θ − αη
∑
j

∇θ′
j
L(θ′j ;D

q
j ), (7)

where α is the meta-step rate, and η is the learning rate of
the normal training. LMeta indicates the meta-test loss on
the query set for calculating gradients, which is associated
with the aforementioned modality-specific loss function. To
simplify the training process, our paradigm treats one batch-
wise iteration in Eq. 7 as a series of training episodes and
conducts several splits of the query and support set within each
batch iteration. The detailed implementation of the alternate
episodic training algorithm is shown in Alg. 1.

Algorithm 1 Batch-wise Episodic Training
Require: Domain number N , split number Nj , learning rate

η, meta-step rate α, dataset D, loss functions LAC , Lt,
Li

Ensure: Prompt parameters Θ
1: Randomly initialize Θ0 = {θI , θT }
2: for t in iterations do
3: Randomly sample a batch Dt = {Di}Ni=1 from D
4: In-Domain Update:
5: Update Θt w.r.t. LAC :

Θt ← Θt − η∇ΘtLAC (Θt;Dt)
6: Domain-Split Update:
7: if base-to-new generalization then
8: θ ← θTt , LMeta ← Lt

9: {(Ds
j , D

q
j )}

Nj

j=1 ← group by class(Dt)
10: else if conventional domain generalization then
11: θ ← θIt , LMeta ← Li

12: {(Ds
j , D

q
j )}

Nj

j=1 ← group by domain(Dt)
13: end if
14: for j = 1 to Nj do
15: θ′j ← θ − α∇θLMeta

(
θ;Ds

j

)
16: gj ← ∇θ′

j
LMeta

(
θ′j ;D

q
j

)
17: end for
18: Update θ with gradients:

θ ← θ − αη
∑Nj

j=1 gj
19: if base-to-new generalization then
20: Θt+1 ← {θIt , θ}
21: else if conventional domain generalization then
22: Θt+1 ← {θ, θTt }
23: end if
24: end for
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D. Computational Complexity Analysis

To analyze the computational complexity of our batch-
wise episodic training, we consider the number of operations
required for both in-domain and domain-split updates. We
denote the batch size of images and the number of class names
as Ni and Nt. Nj indicates the domain number, where Nj

equals to 2 especially for base-to-new generalization. When we
conduct independent V-L prompts within one pair of prompted
encoders, the complexity of a batch step is O(Ni +Nt).

During in-domain updates, we feed all samples in a batch
into our dual-modality prompt tuning network. Considering
that the pre-trained encoder is frozen during training, we pre-
cache the representations for alignment with those of the
prompted encoder. Therefore, the overall complexity of in-
domain updates is O(Ni +Nt). During domain-split updates,
we split samples in the batch into a support set and a query set
based on domains. As we feed them into encoders one after the
other and compute gradients with first-order approximating,
the complexity of one split is also O(Ni + Nt). Since our
domain-split optimization contains Nj episodes for calculating
the meta-gradients, the overall complexity of domain-split
updates is O(Nj(Ni +Nt)).

In summary, considering the overall complexity of in-
domain and domain-split updates is O((Nj + 1)(Ni + Nt)).
Despite the increase in computation compared to the baseline,
our algorithm does not introduce additional sub-networks to
increase the computational burden. Furthermore, since we
perform multiple computations for the same batch in an epoch,
the overall number of epochs can be fewer compared to other
methods, thus compensating for the additional computational
consumption brought about by episodic learning.

V. EXPERIMENTS

We evaluate our approach mainly in the two generaliza-
tion settings, i.e. base-to-new generalization and conventional
domain generalization. In our experiments, we use the open-
source CLIP [47] as the foundation vision-language model.
Here we elaborate on the experimental configurations.

a) Datasets: For base-to-new generalization, we follow
Zhou et al. [73] and evaluate the performance of our method
using 11 image recognition datasets, which cover a wide range
of recognition tasks. Specifically, the benchmark includes Im-
ageNet [10] and Caltech101 [13] for classification on generic
objects; OxfordPets [45], StanfordCars [28], Flowers102 [43],
Food101 [5] and FGVCAircraft [39] for fine-grained classi-
fication; SUN397 [68] for scene recognition; UCF101 [56]
for action recognition; DTD [9] for texture classification; and
finally EuroSAT [20] for satellite imagery recognition. For
each dataset, we split the classes equally into two groups
as base and new classes. We train the model only on base
classes in a few-shot setting, while evaluation is conducted
independently on base and new classes.

For conventional domain generalization experiments, we
select four real-world datasets from the DomainBed bench-
mark, including VLCS [12], PACS [32], OfficeHome [60],

DomainNet [46]. We conduct experiments with the leave-one-
out strategy, where one of the domains is selected as the target
domain at a time, and other domains are used as the source
domains. We train the model on the source domains in few-
shot, while evaluation is conducted on the target domain.

b) Implementation Details: Our implementation is based
on dassl [72], a well-designed PyTorch toolbox for domain
generalization. We apply prompt tuning on the pre-trained
CLIP model with ViT-B/16 as the visual backbone. Both
prompts are randomly initialized from the Gaussian distribu-
tion with a mean of 0 and a standard deviation of 0.02. We
adopt SGD optimization with an initial learning rate of 0.0015,
decayed by the cosine annealing rule, and the meta-step rate
α is set to 0.2. The warming-up trick is adopted during the
first epoch with a fixed learning rate of 10−5.

For base-to-new generalization, the maximum epoch is set
to 8 for all datasets with a batch size of 16. The prompt
length P of visual and textual prompts is set to 2. We set
the split number Nj to 2 for domain-split optimization, where
we evenly divide the samples of a batch into two groups based
on their classes during every split. Following Zhou et al. [73],
we use the few-shot evaluation protocol that selects 16 shots
for training and leverages the whole test set for evaluation.

For conventional domain generalization, the maximum
epoch is set to 6 for all datasets with a batch size of 32. The
prompt length P of visual and textual prompts is set to 4. We
set the split number Nj the same as the domain number N .
The leave-one-out strategy is adopted, wherein samples from
one domain are grouped as the query set at a time, while
samples from other domains are grouped as the support set.
We adopt 1-shot and 5-shot settings for each source domain
during training and evaluate our model on all samples of
the target domain. For the hyper-parameter selection of our
implementation, we share the same hyper-parameters instead
of searching for each dataset.

A. Base-to-New Generalization

The performance of our MetaPrompt in base-to-new gen-
eralization setting on 11 image recognition datasets is shown
in Table I. We compare its performance with zero-shot CLIP
using hand-crafted prompts as the input, and recent prompt
learning methods, including CoOp, CoCoOp, and MaPLe.

a) Generalization to Unseen Classes: In comparison
with the state-of-the-art prompt tuning method MaPLe,
MetaPrompt obtains an overall improvement to 76.09% in
terms of the average accuracy of new classes over 11 datasets
with our episodic training strategy that explicitly constrains the
prompt to generalize to out-of-domain classes. When consider-
ing both base and new classes, MetaPrompt shows an absolute
average gain of 1.02% on the harmonic mean over MaPLe. The
results strongly prove that our method of learning the domain
invariant prompt improves the generalization ability.

b) Performance Gain in Seen Classes: While our ap-
proach achieves excellent performance on generalizing to
unseen classes, it still maintains high accuracy on seen classes
compared with other methods optimized to fit in-domain data,
even better than MaPLe by 1.10%. While the performance on
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TABLE I
COMPARISON OF CLIP, COOP, COCOOP, MAPLE, AND OUR METAPROMPT ON BASE-TO-NEW GENERALIZATION BENCHMARKS. OUR

EXPERIMENTS ARE REPEATED THREE TIMES USING DIFFERENT RANDOM SEEDS. METAPROMPT OUTPERFORMS ALL OTHER METHODS ON BOTH BASE
AND NEW CLASSES AND DEMONSTRATES STRONG GENERALIZATION PERFORMANCE ON 11 IMAGE RECOGNITION DATASETS. H: HARMONIC MEAN (TO

HIGHLIGHT THE GENERALIZATION TRADE-OFF).

(a) Average over 11 datasets.
Base New H

CLIP 69.34 74.22 71.70
CoOp 82.69 63.22 71.66
CoCoOp 80.47 71.69 75.83
MaPLe 82.28 75.14 78.55
MetaPrompt 83.38 76.09 79.57
vs. MaPLe +1.10 +0.95 +1.02

(b) ImageNet.
Base New H

CLIP 72.43 68.14 70.22
CoOp 76.47 67.88 71.92
CoCoOp 75.98 70.43 73.10
MaPLe 76.66 70.54 73.47
MetaPrompt 77.39 71.06 74.09
vs. MaPLe +0.73 +0.52 +0.62

(c) Caltech101.
Base New H

CLIP 96.84 94.00 95.40
CoOp 98.00 89.81 93.73
CoCoOp 97.96 93.81 95.84
MaPLe 97.74 94.36 96.02
MetaPrompt 98.28 94.58 96.39
vs. MaPLe +0.54 +0.22 +0.37

(d) OxfordPets.
Base New H

CLIP 91.17 97.26 94.12
CoOp 93.67 95.29 94.47
CoCoOp 95.20 97.69 96.43
MaPLe 95.43 97.76 96.58
MetaPrompt 95.71 96.98 96.34
vs. MaPLe +0.28 -0.78 -0.24

(e) StanfordCars.
Base New H

CLIP 63.37 74.89 68.65
CoOp 78.12 60.40 68.13
CoCoOp 70.49 73.59 72.01
MaPLe 72.94 74.00 73.47
MetaPrompt 75.43 74.43 74.93
vs. MaPLe +2.49 +0.43 +1.46

(f) Flowers102.
Base New H

CLIP 72.08 77.80 74.83
CoOp 97.60 59.67 74.06
CoCoOp 94.87 71.75 81.71
MaPLe 95.92 72.46 82.56
MetaPrompt 97.53 74.54 84.50
vs. MaPLe +1.61 +2.08 +1.94

(g) Food101.
Base New H

CLIP 90.10 91.22 90.66
CoOp 88.33 82.26 85.19
CoCoOp 90.70 91.29 90.99
MaPLe 90.71 92.05 91.38
MetaPrompt 90.76 91.77 91.26
vs. MaPLe +0.05 -0.28 -0.12

(h) FGVCAircraft.
Base New H

CLIP 27.19 36.29 31.09
CoOp 40.44 22.30 28.75
CoCoOp 33.41 23.71 27.74
MaPLe 37.44 35.61 36.50
MetaPrompt 39.38 37.59 38.46
vs. MaPLe +1.94 +1.98 +1.96

(i) SUN397.
Base New H

CLIP 69.36 75.35 72.23
CoOp 80.60 65.89 72.51
CoCoOp 79.74 76.86 78.27
MaPLe 80.82 78.70 79.75
MetaPrompt 82.10 79.01 80.53
vs. MaPLe +1.28 +0.31 +0.78

(j) DTD.
Base New H

CLIP 53.24 59.90 56.37
CoOp 79.44 41.18 54.24
CoCoOp 77.01 56.00 64.85
MaPLe 80.36 59.18 68.16
MetaPrompt 82.52 60.10 69.55
vs. MaPLe +2.16 +0.92 +1.39

(k) EuroSAT.
Base New H

CLIP 56.48 64.05 60.03
CoOp 92.19 54.74 68.69
CoCoOp 87.49 60.04 71.21
MaPLe 94.07 73.23 82.35
MetaPrompt 93.37 78.34 85.20
vs. MaPLe -0.70 +5.11 +2.85

(l) UCF101.
Base New H

CLIP 70.53 77.50 73.85
CoOp 84.69 56.05 67.46
CoCoOp 82.33 73.45 77.64
MaPLe 83.00 78.66 80.77
MetaPrompt 84.70 78.56 81.51
vs. MaPLe +1.70 -0.10 +0.74

EuroSAT is inferior to MaPLe on seen classes, the substantial
improvement exceeding 5% on unseen classes implies that our
approach exhibits remarkable generalization capabilities.

c) Explanation of our Better Trade-off: MetaPrompt
achieves a good trade-off between in-domain and out-of-
domain data for two reasons. Firstly, our multi-modal prompts
improve the recognition accuracy from two modalities con-
currently and independently. With in-domain updates where
the pre-trained vision-language model assumes supervision,
we obtain a stable boost in fitting both in-domain and out-
of-domain data. Secondly, from the perspective of training
strategies, MaPLe does not explicitly consider the in-domain
and out-domain trade-off and achieving good generalization at
the expense of lower in-domain accuracy, while our approach
proposes an explicit constraint during domain-split updates to
optimize prompts for both seen and unseen classes.

d) Failure in some Datasets: Nevertheless, it is still
noteworthy that in some datasets, there exists a gap compared

to previous methods on base or new classes. In OxfordPets,
with fewer classes than most datasets, the effectiveness of the
domain-split optimization is slightly limited due to the poor
diversity of categories. In Food101, the good performance
of zero-shot CLIP indicates the small difference between
distributions of this dataset and pre-trained data, thus leading
to a potential risk of overfitting during training. For other
datasets like EuroSAT and UCF101, the performance trade-
off on base and new classes should be better balanced.

B. Conventional Domain Generalization

The performance of our MetaPrompt in conventional do-
main generalization setting on four benchmarks is shown in
Table II. We compare its performance with different categories
of domain generalization methods, including the non-ensemble
methods like ERM [19], MLDG [31], Fish [54], CORAL [57],
the ensemble methods like SWAD [6], EoA [3], SEDGE [35],
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TABLE II
COMPARISON OF DOMAIN GENERALIZATION METHODS AND OUR METAPROMPT ON DOMAIN GENERALIZATION BENCHMARKS. CLIP (TEMPLATE)

INDICATES USING ‘A PHOTO OF A {CLASS NAME}’ PROMPT. ‘ENSEMBLE’ AND ‘CLIP’ INDICATE ENSEMBLE AND CLIP-BASED METHODS. OUR
EXPERIMENTS ARE REPEATED THREE TIMES USING DIFFERENT RANDOM SEEDS. ALTHOUGH OUR METHOD IS BASED ON few-shot SETTING, IT ACHIEVES

COMPETITIVE RESULTS AGAINST FULL-TRAINING METHODS AND DEMONSTRATES STRONG PERFORMANCE ON DOMAIN GENERALIZATION
BENCHMARKS.

Method Setting Category Accuracy(%)
Zero-shot Few-shot Ensemble CLIP PACS VLCS OfficeHome DomainNet

ERM [19] 84.2 ± 0.1 77.3 ± 0.1 67.6 ± 0.2 44.0 ± 0.1
MLDG [31] 84.8 ± 0.6 77.1 ± 0.4 68.2 ± 0.1 41.8 ± 0.4

Fish [54] 85.5 ± 0.3 77.8 ± 0.3 68.6 ± 0.4 42.7 ± 0.2
CORAL [57] 86.2 ± 0.3 78.8 ± 0.6 68.7 ± 0.3 41.5 ± 0.1

SWAD [6] ✓ 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 46.5 ± 0.1
EoA [3] ✓ 95.8 ± 0.0 81.1 ± 0.0 83.9 ± 0.0 60.9 ± 0.0

SEDGE [35] ✓ 96.1 ± 0.0 82.2 ± 0.0 80.7 ± 0.2 54.7 ± 0.1
CLIP [47] ✓ ✓ 95.7 ± 0.0 75.9 ± 0.0 79.4 ± 0.0 56.8 ± 0.0

CLIP (template) ✓ ✓ 96.1 ± 0.0 82.3 ± 0.0 82.1 ± 0.0 56.9 ± 0.0
CoCoOp [62] (5-shot) ✓ ✓ 96.7 ± 0.4 78.3 ± 1.0 84.1 ± 0.1 61.1 ± 0.2
MetaPrompt (1-shot) ✓ ✓ 96.9 ± 0.5 81.1 ± 0.3 84.1 ± 0.3 61.2 ± 0.3
MetaPrompt (5-shot) ✓ ✓ 97.0 ± 0.2 82.6 ± 0.6 85.2 ± 0.3 61.8 ± 0.2

as well as zero-shot CLIP and CoCoOp in domain generaliza-
tion setting. Since extracting domain invariant features is the
mainstream idea in traditional domain generalization tasks, we
follow this idea for CLIP-based learning to train the domain
invariant prompt.

In comparison with traditional domain generalization meth-
ods, CLIP-based methods demonstrate outstanding general-
ization capabilities, attributed to the strong transfer learning
ability acquired from pre-trained knowledge. Despite using a
limited number of training samples, our MetaPrompt yields
competitive results in domain generalization benchmarks. It
outperforms alternative methods, including the conditional
prompt tuning approach CoCoOp, across all datasets when
considering average accuracy in the 5-shot setting. More-
over, it achieves comparable performance even in the 1-
shot setting. By simulating the generalization error between
different domains with domain-split optimization, our domain
invariant prompt has a stronger generalization capacity than
a conditional-based prompt generator training independently
with domains.

C. Further Analysis

a) Influence of Model Components: We analyze the
influence of components in our model and conduct an ablation
study on various combinations of them, as shown in Table
III. The baseline method (the first row) simultaneously trains
both textual and visual prompts with a conventional gradient
descent optimizer. The results show that our alternate episodic
training algorithm with both in-domain updates and domain-
split updates positively affects generalization to unseen do-
mains. Among them, in-domain updates achieve an abso-
lute performance gain on new class domains and an overall
boost on new image domains, which shows the effectiveness
of leveraging representations of pre-trained vision-language
foundation models. Our domain-split updates with a novel
optimization strategy also play an important role in boosting
the ability of generalization, which will be analyzed in the

TABLE III
ABLATION ON DIFFERENT COMPONENTS. ‘ID-UPDATE’ AND

’DS-UPDATE’ DENOTE OUR IN-DOMAIN UPDATES AND DOMAIN-SPLIT
UPDATES. ‘MOS’ INDICATES USING OUR MODALITY-SPECIFIC

OPTIMIZATION STRATEGY INSTEAD OF REGULARIZING PROMPTS FOR
BOTH MODALITIES IN BOTH TASKS DURING DOMAIN-SPLIT UPDATES. FOR

DOMAIN GENERALIZATION, WE USE THE 5-SHOT ACCURACY AS THE
EVALUATION METRIC.

(a) Base-to-New Generalization.

ID-Update DS-Update MOS Base New H
82.58 72.81 77.39

✓ 82.89 74.87 78.68
✓ 82.68 75.16 78.74

✓ ✓ 83.20 75.82 79.34
✓ ✓ ✓ 83.38 76.09 79.57

(b) Domain Generalization.

ID-Update DS-Update MOS P V O D
96.6 77.2 83.8 61.2

✓ 96.6 79.6 84.7 61.5
✓ 96.8 80.9 84.6 61.4

✓ ✓ 96.9 82.1 84.9 61.8
✓ ✓ ✓ 97.0 82.6 85.2 61.8

subsequent section. In addition, our modality-specific opti-
mization strategy during domain-split updates further improves
performance on both tasks.

b) Influence of Model Architectures: We perform an
ablation study on diverse model architectures and evaluate the
efficacy of our proposed approach on domain generalization.
We conduct experiments utilizing three commonly employed
architectures for the visual encoder: ViT-B/32, ViT-B/16, and
ViT-L/14. We evaluate the performance of both zero-shot CLIP
and our method in 1-shot and 5-shot settings. As demonstrated
in Table IV, under the 1-shot setting, our approach consis-
tently outperforms zero-shot CLIP in terms of out-of-domain
performance. The only exception is VLCS, where there is a
slight lag attributable to the limitations imposed by sample size
and significant domain shift. In the 5-shot setting, our method
demonstrates notably greater progress, yielding a substantial
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TABLE IV
ABLATION ON DIFFERENT MODEL ARCHITECTURES.

Backbone Setting P V O D Avg.
CLIP 94.7 80.1 78.2 53.5 76.6

ViT-B/32 1-shot 94.7 79.0 80.7 57.0 77.9
5-shot 95.0 79.8 81.9 57.6 78.6
CLIP 96.1 82.3 80.7 56.9 79.0

ViT-B/16 1-shot 96.9 81.1 84.1 61.4 80.9
5-shot 97.0 82.6 85.2 61.8 81.7
CLIP 98.4 81.9 85.7 61.2 81.8

ViT-L/14 1-shot 98.1 81.4 88.8 66.7 83.8
5-shot 98.7 82.2 89.5 67.2 84.4

6.0% improvement on DomainNet when employing the ViT-
L/14 as our model architecture. This illustrates the efficacy of
our method across various model architectures.

c) Visualization of Image Embeddings: We randomly
select three datasets to analyze the t-SNE plots of image
embedding, as shown in Fig. 5. Our MetaPrompt demonstrates
superior inter-class separability and intra-class cohesiveness
across both base and new classes. We attribute the strong
performance of our method to the utilization of visual prompts,
which are acquired under the guidance of pre-trained textual
representations. Because these representations remain constant
during the training process, embeddings with visual concepts
can be more effectively aligned with their corresponding
textual labels, thus tending to form distinct clusters On the
other hand, the pre-trained CLIP model possesses a robust
capability for semantic representation. Under the guidance of
distinct textual semantics, image embeddings from various
classes can be better separated.

d) Influence of Prompt Length: We conduct an ablation
study on prompt length in both generalization settings. Specif-
ically, we examine prompt vectors of 1, 2, 4, 8, 16, and 32
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Fig. 5. T-SNE plots of image embeddings in previous methods MaPLe and
our method MetaPrompt on diverse image recognition datasets. Points with
the same color represent image embeddings of the same class.

TABLE V
ABLATION ON DIFFERENT PROMPT LENGTHS.

(a) Base-to-New Generalization.
Length Base New H

1 82.88 75.28 78.90
2 83.38 76.09 79.57
4 83.62 75.82 79.53
8 83.89 75.54 79.50

16 83.91 75.19 79.31
32 83.86 74.62 78.97

(b) Domain Generalization.
Length P V O D Avg.

1 96.6 80.5 84.5 61.5 80.8
2 96.8 81.3 85.0 61.6 81.2
4 97.0 82.6 85.2 61.8 81.7
8 97.0 81.5 84.6 61.6 81.2

16 96.9 80.4 84.5 61.5 80.8
32 96.8 79.7 84.5 61.6 80.7

in each layer for both modalities, all initialized randomly, as
summarized in Table V. For base-to-new generalization, it is
evident that models with longer prompt lengths perform better
on base classes, while the opposite trend emerges on the new
classes When applying our training strategy, the difference in
performance on the harmonic mean is relatively small, except
for 32 prompt vectors with a dramatic drop. These results
suggest that employing 2 prompt vectors is the optimal choice
when considering the accuracy of both base and new classes.
For conventional domain generalization, a shorter prompt
proves insufficient for recognizing visual concepts effectively,
whereas a longer prompt appears prone to overfitting on in-
domain samples. Our method demonstrates promising results
in terms of overall performance with a prompt length of 4.

e) Influence of Domain-Split Optimization: We investi-
gate the influence of our proposed domain-split optimization
strategy. Fig. 6 illustrates a consistent performance improve-
ment across datasets for both generalization tasks. Specifically,
our optimization strategy leads to an approximate 3% increase
in accuracy for both FGVCAircraft in base-to-new general-
ization and VLCS in conventional domain generalization. The
consistent improvements provide evidence that our domain-
split optimization significantly mitigates failures on out-of-
domain data and enhances robustness to new classes, under-
scoring its excellent generalization capability. Comparing the
replacement of domain-split updates with in-domain updates,
the observed improvements are not statistically significant,
thus demonstrating the effectiveness of alternate updates.

D. Limitation and Bias

Although achieving significant experimental results com-
pared with previous methods, it is noteworthy that our ex-
perimental design may still have some limitations and biases.
From the aspect of dataset selection, despite the selected image
recognition datasets covering a wide range of tasks, we only
randomly sample a small amount of data from the whole
dataset. It may be a tricky challenge to apply the method to
real few-shot datasets, like medical images. From the aspect of
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Fig. 6. Performance change with our proposed domain-split optimization
strategy over datasets for base-to-new generalization and domain generaliza-
tion. We compare the performance of our model with domain-split updates
and with in-domain updates instead (equivalent to doubling the learning rate
of in-domain updates).

metric limitations, beyond the aforementioned generalization
tasks, experiments on more complex settings of generalization,
like from different tasks with larger domain shifts, may also
validate the effectiveness of domain invariant prompts.

VI. CONCLUSION

We introduce MetaPrompt, a novel approach for learning the
domain invariant prompt with the vision-language model CLIP
to address the challenge of generalization. Our theoretical anal-
ysis demonstrates that the episodic training strategy provides
a robust generalization guarantee for domain generalization
tasks. Utilizing this analysis as a foundation, we devise an
innovative episodic training algorithm, which alternates be-
tween in-domain updates and domain-split updates for prompt
tuning. Through the application of asymmetric regularization
and modality-specific optimization, our dual-modality prompt
tuning network enables prompt learning in few-shot scenarios,
showing remarkable generalization to unseen classes and do-
mains. Extensive experiments on base-to-new generalization
and domain generalization consistently validate the superior
performance of our approach over existing methods.

While traditional prompt learning approaches frequently
lead to a degradation in generalization performance, our
method offers valuable insights into accessing the inherent

relationship between domains and presents a viable solution
for acquiring the invariant prompt, thus mitigating poor per-
formance on unseen tasks. In the future, we will attempt to
utilize the power of LLMs to acquire linguistic knowledge for
learning domain-invariant as well as domain-specific prompts
to fully capture semantic information to assist downstream
recognition tasks. In addition, we will aim to apply domain
invariant prompt learning for dense prediction, including se-
mantic segmentation and depth estimation, etc., to enhance the
generalization performance on other tasks.
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