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Abstract. Text-based person search aims to retrieve the target per-
son in an image gallery based on textual descriptions. Solving such a
fine-grained cross-modal retrieval problem is very challenging due to dif-
ferences between modalities. Moreover, the inter-class variance of both
person images and descriptions is small, and more semantic information
is needed to assist in aligning visual and textual representations at differ-
ent scales. In this paper, we propose a Part-based Multi-Scale Attention
Network (PMAN) capable of extracting visual semantic features from
different scales and matching them with textual features. We initially
extract visual and textual features using ResNet and BERT, respectively.
Multi-scale visual semantics is then acquired based on local feature maps
of different scales. Our proposed method learns representations for both
modalities simultaneously based mainly on Bottleneck Transformer with
self-attention mechanism. A multi-scale cross-modal matching strategy
is introduced to narrow the gap between modalities from multiple scales.
Extensive experimental results show that our method outperforms the
state-of-the-art methods on CUHK-PEDES datasets.

Keywords: Person re-identification · Cross-modal retrieval ·
Representation learning

1 Introduction

Recently, text-based person search has gained increasing attention due to its
potential applications in intelligent surveillance. It aims to retrieve the target
person according a relevant textual description. Since natural language is more
accessible as retrieval queries, text-based person search has great necessity in
the absence of target images. However, it is a challenging task due to difficulties
of both person re-identification and cross-modal retrieval. First, it is difficult
to extract robust features due to interference from occlusion and background
clutter. Second, all images and descriptions belong to the same category, person,
thus making inter-modality variance much larger than intra-modality variance.

To solve these problems, related methods [1–8] have been proposed in recent
years to reduce the gap between these two modalities and thus improve the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Yu et al. (Eds.): PRCV 2022, LNCS 13534, pp. 462–474, 2022.
https://doi.org/10.1007/978-3-031-18907-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18907-4_36&domain=pdf
https://doi.org/10.1007/978-3-031-18907-4_36


Part-Based Multi-Scale Attention Network for Text-Based Person Search 463

matching accuracy. These methods always focus on two problems, one is how
to learn representations in a coarse-to-fine manner for both modalities, and the
other is how to find an adaptive multi-scale cross-modal matching strategy that
all features are well-aligned. Many current works are unable to solve these two
problems well at the same time. Some of them learn representations only from
local scale [1–3] or global scale [4–7], which are unable to generate features at
different scales from both coarse-grained and fine-grained perspectives. Although
some approaches [9,10] consider combining local features with global features,
some fragments of textual descriptions still cannot align with visual regions that
are semantically consistent with them.

The relevance at different scales makes it difficult to align visual and textual
features. For multi-scale matching, existing methods [2–5] try to align images
and texts at different scales using predefined rules. However, these methods do
not take into account the cross-scale association between modalities. As shown
in Fig. 1, images and textual descriptions can be decomposed into regions and
phrases at local scale. Since the phrase “belt” exists in one visual region while
the phrases “long sleeve white shirt” and “black pants” appear in two separated
visual regions, phrase-region matching at a fixed scale is not effective, where the
cross-scale matching of semantics between modalities is completely ignored.

Retaining semantics for visual representation learning is always critical. Some
methods [11,12] use horizontal segmentation referring to PCB [13] in person re-
identification, aiming to match relevant textual semantics based on local salient
parts of images. However, this segmentation operation can easily break visual
semantics existing in different regions. As shown in Fig. 1, the visual semantics of
the phrase “books” is exactly partitioned by two visual regions, and from neither
of these two regions can the model accurately recognize the semantics matching
the phrase. This prevents the model from fully extracting key information, and
leads to inaccurate matching results. Considering the above, an approach is
urgently needed for multi-scale feature extraction while preserving semantics at
different scales.

Fig. 1. Phrase-region matching at a fixed scale is not effective, where the cross-scale
semantic matching between modalities is completely ignored, and the segmentation
operation can easily break visual semantics existing in different regions.
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To address these problems, we introduce a part-based multi-scale attention
network for text-based person search, aiming at improving the representation
learning and matching methods from different scales in an end-to-end manner
and enhancing the semantics with the ability to collect global information by
self-attention mechanism [14]. For visual representation learning, we use a pre-
trained ResNet [15] to generate the basic feature map for each image, which is
horizontally segmented into several strips to generate regions at different scales.
All visual features with the same scale are combined together after scale-specific
attention-based branches with Bottleneck Transformer [16] blocks to output
visual representations. For textual representation learning, each word embed-
ding is learned by a pre-trained BERT [17] with fixed parameters and is further
processed by a network with hybrid branches. In each branch, textual repre-
sentations adaptively learn to match visual representations, thus eliminating
the inter-modality variance. In addition, we introduce a multi-scale cross-modal
matching strategy with the cross-modal projection matching (CMPM) loss [4],
thus gradually reducing the gap between modalities from different scales. Our
main contributions are summarized as follows.

• We propose a dual-path feature extraction framework for learning multi-scale
visual and textual representations simultaneously, where semantic informa-
tion is captured for both modalities based on Bottleneck Transformer blocks
with self-attention mechanism.

• We introduce a multi-scale cross-modal matching strategy using cross-modal
projection matching (CMPM) loss, thus gradually reducing the variance
between modalities from different scales.

• Our proposed method outperforms all other methods on the CUHK-PEDES
[6] datasets. Extensive ablation studies demonstrate the effectiveness of com-
ponents in our method.

2 Related Works

2.1 Person Re-identification

Recently, there are many person re-identification methods based on deep learning
to improve the matching accuracy by exploring and mining the fine-grained
discriminative features in person images. PCB [13] proposes a convolutional
baseline based on local information, which segments the global feature map into
horizontal strips to extract local features. MGN [18] varies the number of divided
strips in different branches to obtain local feature representations with multiple
scales. In addition, some works [19–21] consider the detection of body parts with
external tools or attention mechanism to improve the quality of local features by
detecting subtle changes in local regions. However, such approaches rely heavily
on pose estimation and semantic parsing algorithms, while ignoring the semantic
connection between different local regions, resulting in critical visual semantics
not being fully extracted. Moreover, many works [13,22] tend to limit to a fixed
local scale without paying attention to the semantic information at other scales,
thus reducing the discrimination of representations.
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2.2 Text-Based Person Search

The development of text-based person search is gradually gaining attention from
the research community. Li et al. [6] first introduce the text-based person search
task and propose GNA-RNN to output the similarity between images and textual
descriptions. Zheng et al. [5] propose a dual-path convolutional neural network
for visual-linguistic embedding learning, which can be efficiently fine-tuned end-
to-end. Zhang et al. [4] design cross-modal projection matching (CMPM) loss
and cross-modal projection classification (CMPC) loss for cross-modal embed-
ding learning. Some works are based on body parts with external tools to assist
in extracting visual features. Among them, PMA [2] proposes a pose-guided
multi-granularity attention network to match visual regions associated with
descriptions from multiple granularities based on human pose estimation. VITAA
[3] uses semantic segmentation labels to drive the learning of attribute-aware
features.

Some recent works have focused more on feature matching at different scales.
AXM-Net [9] dynamically exploits multi-scale knowledge from both modalities
and recalibrates each modality based on shared semantics. NAFS [23] constructs
full-scale representations for visual and textual representations and adaptively
conducts joint alignments at all scales. SSAN [10] extracts semantic alignment by
exploring relatively aligned body parts as supervision and using contextual cues
from descriptions to extract part features. TIPCB [12] learns visual and textual
local representations through a dual-path local alignment network structure with
a multi-stage cross-modal matching strategy. Nevertheless, such methods lack
attention to semantic integrity, leading to inaccurate alignment. By comparison,
we propose a novel method that learns and aligns representations more effective
by utilising self-attention mechanism within multi-scale setting.

3 Our Approach

In this section, we explain our PMAN in detail. First, we introduce the framework
for extracting visual and textual representations. Then we describe the multi-
scale cross-modal matching module. The architecture is shown in Fig. 2.

3.1 Multi-scale Visual Representation Learning

For visual representation learning, we first take the image I as the input of
ResNet, and the feature fI ∈ RH×W×C generated after its fourth residual blocks
is used as the basic feature map, where H, W and C represent the dimension of
height, width and channel. The structure of the multi-scale visual representation
learning module based on this feature map, including a local-scale branch, a
medium-scale branch and a global-scale branch, is shown in Fig. 3.

For each visual branch, we utilise Bottleneck Transformer [16] (BoT) as back-
bone, which introduces the self-attention mechanism into the bottleneck archi-
tecture by replacing the convolutional layer with a multi-headed self-attention
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Fig. 2. The architecture of the proposed PMAN, including a dual-path feature extrac-
tion framework with attention-based branches for multiple scales and a multi-scale
cross-modal matching module. BoT stands for Bottleneck Transformer. Seg. indicates
horizontal segmentation on the basic feature map. Concat. indicates concatenation of
every two neighboring local feature maps. * indicates parallel branches.

layer (MHSA). The CNN backbone, due to the nature of the convolutional ker-
nel, tends to focus on local features instead of semantic integrity, so it is essential
to stack Transformer blocks that are specialize in capturing global information
within a specific scale, thus achieving better performance with less parameters.

In the local-scale branch, We first use the strategy of PCB [13] to horizontally
segment the basic feature map fI into several local regions {fI,i}Ki=1, where
fI,i ∈ R

H
K ×W×C . Then we take each local region as the input of a Bottleneck

Transformer consisting of M + 1 blocks to obtain local features
{
f l
I,i

}K

i=1
after

a maximum pooling layer, where f l
I,i ∈ R1×C . These features usually contain

fine-grained semantics and play a crucial role in learning discriminative visual
features.

In the medium-scale branch, considering that the semantics existing in multi-
ple local regions are easily destroyed, we concatenate every two neighboring local
feature maps after the first block of the local-scale branch to generate medium-
scale regions. We take them as the input of a Bottleneck Transformer consisting
of M blocks to obtain self-attention weighted feature maps for medium-scale
regions, and output K − 1 medium-scale features

{
fm
I,i

}K−1

i=1
after a maximum

pooling layer, where fm
I,i ∈ R1×C , which usually contain the significant semantic

information associated with descriptions. By combining semantic information in
local-scale regions, the semantics disrupted by segmentation is preserved. For
above two branches, local-scale representation f l

I ∈ RC and medium-scale rep-
resentation fm

I ∈ RC are generated after an average pooling layer.
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Fig. 3. The structure of the multi-scale visual feature learning module. BoT stands for
Bottleneck Transformer. MHSA stands for multi-head self-attention.

In the global-scale branch, we directly use the basic feature map fI as the
input to the Bottleneck Transformer. Since this feature map already contains
semantic information at global level, the Transformer for this branch consists of
one single block to highlight the visual semantic information. The global-scale
feature is obtained after a maximum pooling layer, and squeezed to global-scale
representation fg

I ∈ RC , which is not influenced by local semantics. These above
three representations as well as the set of medium-scale features serve for the
multi-scale matching stage.

3.2 Multi-scale Textual Representation Learning

For texual representation learning, a pre-trained language model BERT [17] is
used to extract word embeddings with discriminative properties. Specifically, we
decompose the sentence and tokenize it to obtain the token sequence, and then
truncate or pad the sequence according to the maximum length L. We feed them
into BERT with fixed parameters to generate word embeddings fw ∈ RL×D,
where D denotes the dimension of each word embedding. Since the dimension
of embeddings needs to match with the input of bottleneck blocks, we expand
the word embeddings and pass them through an 1 × 1 convolutional network to
adjust the dimension of channel from D to C, and textual feature ft ∈ R1×L×C

is obtained after a batch normalization layer.
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Similar to visual representation learning, our multi-scale textual representa-
tion learning module also consists of local-scale branch, medium-scale branch
and global-scale branch, each for adapting visual representations at the same
scale. We refer to the method introduced by Chen et al. [18], which stacks resid-
ual bottlenecks as textual backbone, in which way can textual representations
adaptively learn to match visual representations. We improve this approach by
introducing a novel hybrid branch, as shown in Fig. 4. The hybrid branch con-
sists of two residual bottlenecks and a Bottleneck Transformer block sandwiched
between them. For efficiency, the former residual bottleneck shares the parame-
ter with all branches at the same scale. Considering the effectiveness for visual
recognition, we apply Bottleneck Transformer to textual representation learning,
aiming to extract long-distance relations between word embeddings for better
comprehension. By mixing the residual bottleneck and Bottleneck Transformer,
we introduce self-attention into local feature learning in a multi-scale way.

Fig. 4. The structure of the hybrid branch, consisting of a scale-shared residual bot-
tleneck, a Bottleneck Transformer block and a residual bottleneck.

The local-scale and medium-scale branches consist of one single hybrid branch
and K −1 paralleled hybrid branches respectively, and a maximum pooling layer
is added at the end of each branch to generate textual representations f l

t ∈
RC and {fm

t,i}K−1
i=1 , where fm

t,i ∈ RC . Medium-scale textual representations are
further processed with an average pooling layer to generate representation f l

t ∈
RC for matching. In the global-scale branch, considering that stacking complex
blocks tends to be time-consumed for training while accuracy is not significantly
improved, we only use one single Bottleneck Transformer block for learning long-
distance association between word embeddings, while suppressing the overfitting
phenomenon. A maximum pooling layer is then added to obtain the global-
scale representation fg

t ∈ RC . The representations extracted from these three
branches are already capable of adapting to the visual representations, so that
textual representations with highly integrated visual semantics can be learned.

3.3 Multi-scale Feature Matching

In the multi-scale feature matching stage, we use the cross-modal projection
matching (CMPM) loss [4] as the loss function, which minimizes the KL diver-
gence between the projection compatibility distributions and the normalized
matching distributions to eliminate the difference between textual and visual
modalities. Specifically, within a given small batch of N pairs, according to the
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image representation xI
i , the set of image-text representation pairs within the

batch can be denoted as
{(

xI
i , x

T
j

)
, yi,j

}N

j=1
, where yi,j = 1 when xI

i and xT
j

have the same identity, and yi,j = 0 otherwise. For each image-text representa-
tion pair, we can calculate the matching probability between them by:

pi,j =
exp

(
xI
i
�

x̄T
j

)

∑N
k=1 exp

(
xI
i
�

x̄T
k

) s.t. x̄T
j =

xT
j∥

∥xT
j

∥
∥ , (1)

where x̄T
j denotes the regularized textual representation. For the matching prob-

ability between xI
i and xT

j , we use the normalized label distribution qi,j as the
real distribution. The matching loss in one direction can be calculated by:

Li2t =
N∑

i=1

N∑

j=1

pi,j log
pi,j

qi,j + ε
s.t. qi,j =

yi,j
∑N

k=1 yi,k
, (2)

where ε is a very small value to avoid numerical problems. Lt2i can be calculated
in a reverse way. Therefore, the CMPM loss is computed by L = Li2t + Lt2i.

Considering that our dual-path feature extraction framework consists of sev-
eral branches, each of which generates features at specific scale, we sum the
CMPM loss according to visual and textual representations from all scales. The
overall objective function is calculated by:

Loverall = Lg + Lm + Ll + Lalign, (3)

where Lg, Lm and Ll indicate the CMPM loss of local-scale, medium-scale and
global-scale representations, respectively. The aligning loss Lalign =

∑K−1
i=1 Lm,i

represents the CMPM loss computed with medium-scale features, which pre-
serve the semantic association between local regions and have more information
aligned with descriptions comparing to other scales. By reducing the overall
function, our model learns well-aligned representations for both modalities.

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Protocol. The CUHK-PEDES [6] datasets, which
is currently the mainstream benchmark for text-based person search, contains
40206 images of 13003 person IDs, each of which has two textual descriptions
annotated by different annotators. These textual descriptions have a vocabulary
of 9408 different words. The training set has 34054 images of 11003 person IDs.
The validation set has 3078 images of 1000 person IDs, and the test set has 3074
images of 1000 person IDs.

The experimental results are measured by the top-K (K = 1, 5, 10) metric.
Given a textual description as query, all test images are ranked according to
their similarity to the query, and top-K indicates the percentage of successful
searches among all searches in the first K results.
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Implementation Details. For visual representation learning, the input images
are resized to 384 × 128. We use ResNet50 [15] as visual backbone to extract
the basic feature map. The height, width and channel dimension of the basic
feature map are set to H = 24, W = 8, C = 2048. The number of local-scale
visual regions is set to K = 6. The number of Bottleneck Transformer blocks is
set to M = 3. For textual representation learning, we use a pre-trained BERT-
Base-Uncase for extracting word embeddings, where the maximum length is set
to L = 64. In the training phase, we use an SGD optimizer with momentum to
optimize the model for 80 epochs. The initial learning rate is 0.003 decreased
by 0.1 after 50 epochs. We randomly horizontally flip and crop the images to
augment data. In the testing phase, we simply sum the local-scale, medium-
scale and global-scale representations as the final representation for retrieval.
The batch size for both the training and testing phase are set to N = 64.

4.2 Comparison with State-of-the-Art Methods on CUHK-PEDES

This section compares the result of our method proposed in this paper with other
previous works, as shown in Table 1. These methods can be broadly classified
into global-level methods and local-level methods. Compared with global-level
methods, local-level methods prefer to obtain discriminative features from local
visual regions and align them with phrase-level semantics in textual descriptions
to improve matching accuracy. It can be observed that our PMAN can out-
perform all the existing methods. This further illustrates that our multi-scale
approach with self-attention is crucial for improving matching accuracy.

Table 1. Comparison with state-of-the-art methods on CUHK-PEDES datasets.
Top-1, top-5 and top-10 accuracies (%) are reported. “g” represents the methods only
using global features, and “l+g” represents the methods using global and local features.

Method Type Top-1 Top-5 Top-10

GNA-RNN [6] g 19.05 – 53.64

IATV [7] g 25.94 – 60.48

PWM + ATH [24] g 27.14 49.45 61.02

Dual Path [5] g 44.40 66.26 75.07

CMPM + CMPC [4] g 49.37 – 79.27

MIA [1] l + g 53.10 75.00 82.90

PMA [2] l + g 53.81 73.54 81.23

ViTAA [3] l + g 55.97 75.84 83.52

NAFS [23] l + g 59.94 79.86 86.70

MGEL [11] l + g 60.27 80.01 86.74

SSAN [10] l + g 61.37 80.15 86.73

AXM-Net [9] l + g 61.90 79.41 85.75

LapsCore [25] l + g 63.40 – 87.80

TIPCB [12] l + g 64.26 83.19 89.10

PMAN (Ours) l + g 64.51 83.14 89.15
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4.3 Ablation Studies

Effects of Multi-scale Representation Learning. In this section, we con-
duct experiments for each branch to analyze the importance of representation
learning at different scales. Table 2 shows the experimental results on the CUHK-
PEDES dataset when different branches are selected to train for representation
learning. From the variants (a), (b) and (c), it shows that when only one single
branch is trained, the medium-scale branch gains the best accuracy, which proves
that it is crucial to preserve the semantic association between local regions. From
the variants (b) and (g), it can be seen that the multi-scale feature learning
framework can enhance the discrimination of visual and textual features at dif-
ferent scales, thus enabling our model to fuse intra-modality features to improve
the matching accuracy while aligning inter-modality semantic information.

Table 2. Performance comparison of training with different branches in our method.
Top-1, top-5 and top-10 accuracies (%) are reported.

Variant Local-scale Medium-scale Global-scale Top-1 Top-5 Top-10

(a) � 60.12 81.36 88.13

(b) � 62.26 82.33 88.59

(c) � 60.55 81.34 88.26

(d) � � 62.07 82.26 88.52

(e) � � 61.79 82.27 88.55

(f) � � 63.10 82.71 88.96

(g) � � � 64.51 83.14 89.15

Effects of Backbone with Self-attention. To demonstrate the importance of
self-attention mechanism for extracting semantic representations, we analyze the
impact of Bottleneck Transformer structure employed as backbone for our pro-
posed model. For comparison, we replace Bottleneck Transformer blocks with
residual bottleneck blocks in all branches of different modalities, while other
components remain unchanged. The experimental results are shown in Table 3.
Comparing the variant (a) with (b) and (c), it can be found that Bottleneck
Transformer blocks with self-attention in both modalities improve the matching
accuracy, which proves that this design enables the association of salient seman-
tics between modalities. Moreover, the self-attention in textual representation
learning has a greater impact on results, which reveals the fact that the struc-
ture can extract long-distance relations between word embeddings, which make
them produce higher response when relevant queries are given. From the variant
(d), it can be seen that the attention-based architecture can facilitate our model
to extract better semantic information from both modalities, thus achieving an
excellent matching accuracy in the multi-scale representation matching stage.
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Table 3. Performance comparison of learning visual and textual representations with
Bottleneck Transformer as backbone in our method. Top-1, top-5 and top-10 accuracies
(%) are reported.

Variant Visual backbone Textual backbone Top-1 Top-5 Top-10

(a) 61.63 81.65 88.30

(b) � 62.31 82.35 88.73

(c) � 62.68 82.42 88.94

(d) � � 64.51 83.14 89.15

5 Conclusion

In this paper, we propose a part-based multi-scale attention network capable of
extracting visual semantic features from different scales and matching them with
textual features. For representation learning, we introduce Bottleneck Trans-
former with self-attention mechanism in both modalities to capture features
with semantics. For representation matching, we adopt a multi-scale cross-modal
adaptive matching strategy. The comparison results show that our approach
outperforms the state-of-the-art methods on CUHK-PEDES dataset. Extensive
ablation studies demonstrate the effectiveness of components in our method.
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