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Abstract

We present Uni2Det, a brand new framework for unified and universal multi-
dataset training on 3D detection, enabling robust performance across diverse
domains and generalization to unseen domains. Due to substantial disparities in
data distribution and variations in taxonomy across diverse domains, training such
a detector by simply merging datasets poses a significant challenge. Motivated by
this observation, we introduce multi-stage prompting modules for multi-dataset 3D
detection, which leverages prompts based on the characteristics of corresponding
datasets to mitigate existing differences. This elegant design facilitates seamless
plug-and-play integration within various advanced 3D detection frameworks in
a unified manner, while also allowing straightforward adaptation for universal
applicability across datasets. Experiments are conducted across multiple dataset
consolidation scenarios involving KITTI, Waymo, and nuScenes, demonstrating
that our Uni2Det outperforms existing methods by a large margin in multi-dataset
training. Furthermore, results on zero-shot cross-dataset transfer validate the
generalization capability of our proposed method.

1 Introduction

With the ability to capture precise geometric information of entire scenes, LiDAR has become an
essential sensor for most autonomous vehicles. Due to the rapid development of large-scale annotated
3D LiDAR datasets such as Waymo [15], nuScenes [1], and KITTI [5], LiDAR-based models play a
significant role in various critical perception tasks for autonomous vehicles, particularly in 3D object
detection. Recent studies [10, 4, 12, 14, 2, 21, 27, 20] have made significant advancements in 3D
detection using large-scale benchmarks and have demonstrated superior performance by leveraging
precise 3D geometric information extracted from point clouds. However, despite these breakthroughs,
current LiDAR-based models typically adhere to a paradigm of training and testing within a single
dataset, which limits the source data to a narrow domain, as shown in Figure 1(a). Deploying
dataset-specific models directly onto other datasets equipped with different LiDAR systems often
leads to significant performance degradation due to substantial domain shifts [24, 25]. Consequently,
the single-dataset paradigm fails to produce a robust and generalizable perception model, leading to
poor performance on different datasets and further impairing the generalization ability.

Despite the availability of vast training data in 2D vision [7, 8, 17], 3D vision has not yet fully
benefited from this privilege due to serious cross-dataset discrepancies. A direct approach to designing
a unified 3D object detection framework for achieving multi-dataset training (MDT) involves merging
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Figure 1: Illustration of different training paradigms. Single-dataset training leverages separate
detectors and heads for different datasets. Naive multi-dataset training conducts point range alignment
and partially shares the parameters within detectors, but still with dataset-specific heads. We propose
unified and universal training, where detectors and heads for different datasets are fully shared.

multiple datasets and retraining the baseline detector on the merged dataset. However, significant
domain gaps exist between 3D datasets, and directly combining multiple data sources can result
in negative transfer. To address this issue, some efforts [29] focused on 3D multi-dataset object
detection have offered solutions for building a unified training paradigm for point cloud data from
different domains. As shown in Figure 1(b), the overall framework is designed in a dataset-specific
manner, sharing certain backbone parameters while employing separate normalization and head
layers for different datasets. Despite alleviating the unavoidable data-level differences to some extent,
this independent paradigm suffers from two challenges: (i) this paradigm inhibits the full mutual
utilization of each dataset’s unique features, thereby constraining the further enhancement of the
model’s capabilities; (ii) the capacity for generalization to unseen domains is constrained due to
the customization of certain network parameters specific to the trained dataset. Our main goals
include effectively unifying the processing of diverse larger-scale point cloud data and ensuring
robust generalization of the trained model to unseen domains.

To achieve these goals, we propose Unified and Universal framework for 3D Detection (Uni2Det),
as shown in Figure 1(c), which integrates multi-stage prompting modules applicable to any LiDAR
dataset and various 3D object detection baselines used in autonomous driving. Due to inherent
discrepancies in large-scale 3D datasets, we perform point distribution correction during voxelization
to learn unified point and voxel representations across datasets, centered on mean-shifted batch
normalization. Furthermore, handling data with varying statistical distributions within the backbone
remains a challenging problem. To mitigate variations in data distribution, particularly from the
perspective of point range, we introduce BEV-based range masking that acts on BEV features. This
approach provides prior signals for the 2D convolutional network, enabling it to effectively handle
point clouds from different datasets in a unified manner. Additionally, we observe that the same
category exhibits statistical differences across datasets, which hinders the effectiveness of a universal
detection head to some extent. To this end, we learn object-conditional residuals as prompts acting
on each RoI feature, integrating features from pre-trained heads with new knowledge about the target
domain. Benefiting from the multi-stage prompting modules, our model can fully utilize diverse
datasets for joint training, thereby improving in-domain detection performance. At the same time, the
prior characteristics of unseen datasets can also be leveraged within a unified network as encoded
prompts, enabling better out-of-domain generalization. Furthermore, this framework facilitates
seamless plug-and-play integration within various advanced 3D detection frameworks while allowing
straightforward adaptation for universal applicability across datasets.

Our main contributions consist of three parts:

• We introduce a novel training paradigm for 3D object detection which focuses on unified
and universal multi-dataset training, aiming at enhancing the performance in MDT settings.

• We present Uni2Det, a novel framework on 3D detection with multi-stage prompting modules
for prompting various components in a detector including voxelization, backbone and head,
enabling robust performance across diverse domains and generalization to unseen domains.
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• Experiments are conducted across multiple dataset consolidation scenarios involving KITTI,
Waymo, and nuScenes, demonstrating that Uni2Det significantly outperforms existing
methods in multi-dataset training. Results on zero-shot cross-dataset transfer also validate
the generalization capability of the proposed method.

2 Related works

2.1 LiDAR-based 3D object detection

LiDAR-based 3D object detection aims to produce a collection of 3D bounding boxes along with their
associated object categories using a LiDAR point cloud. Current LiDAR-based 3D object detection
research [10, 12, 11, 14, 23, 13] can be broadly categorized into point-based methods, voxel-based
methods, and hybrid point-voxel-based methods. Point-based methods generate feature maps directly
from raw point clouds, thereby leveraging more accurate geometry information compared to previous
methods. Point-RCNN [11] is a pioneering effort that explores the generation of bounding boxes
from point cloud data. 3DSSD [26] introduces a novel fusion sampling strategy to remove the
time-consuming FP layers and the refinement module. Unlike point-based methods, Voxel-based
methods like VoxelNet [32] initially voxelize the input point cloud, transforming irregular LiDAR
points into ordered voxels, and then extract features using 3D convolutions. SECOND [23] improves
upon VoxelNet by employing sparse convolutions, significantly reducing runtime and the required
memory. PointPillars [10] encodes the input point cloud into pillars and employs 2D convolutions
for feature extraction. Voxel-RCNN [4] analyzes the advantages of voxel features and explores
a balanced trade-off between detection accuracy and inference speed. Additionally, some studies
attempt to merge the advantages of point-based and voxel-based representations. PV-RCNN [12] and
PV-RCNN++ [14] leverage both multi-scale 3D voxel CNN features and PointNet-based features,
consolidating them into a concise set of keypoints using a newly proposed voxel set abstraction layer.
Nevertheless, all the aforementioned detectors are trained and evaluated using separate 3D datasets,
leading to significant degradation in detection accuracy when applied to other different datasets.

2.2 Multi-dataset training

In recent years, training on multiple diverse datasets has emerged as an effective strategy for enhancing
model robustness. Multi-dataset training has been previously investigated in the image domain,
particularly in tasks such as object detection [31, 18] and image segmentation [9]. For perception
tasks [3, 6, 30], dataset unification involves consolidating various semantic concepts. Early studies [9,
30, 22] have focused on merging taxonomy information and training models on a unified label
space. MSeg [9] manually unified the taxonomies of different semantic segmentation datasets and
resolved inconsistent annotations between them. Universal-RCNN [22] trains a partitioned detector
on multiple large datasets and modeled class relations using an inter-dataset attention module. To
reduce the annotation cost associated with unifying the label space, recent studies [31, 18] have
explored the use of dataset-specific supervision. Zhou et al. [31] present a simple recipe for training
a single object detector across multiple datasets and a formulation to automatically construct a
unified taxonomy. Although joint training of a unified detector has been studied in 2D perception
tasks, further exploration in 3D perception tasks, such as 3D object detection, remains urgently
needed. Recent studies [29] attempt to design a framework in a dataset-specific manner, sharing
certain backbone parameters while employing separate normalization and head layers for different
datasets. To address these issues, we propose Uni2Det for 3D detection, which integrates multi-stage
prompting modules applicable to any LiDAR dataset and various 3D detection baselines, enabling
robust performance across domains and generalization to unseen domains.

3 Method

The overall framework is shown in Figure 2. We first describe our problem setting and the multi-
dataset evaluation method in Sec. 3.1. Next, we introduce our multi-stage prompt learning modules
for multi-dataset 3D detection, from various components in detectors including Voxelization in Sec.
3.2, Backbone in Sec. 3.3 and Head in Sec. 3.4.
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Figure 2: Illustration of the overall framework of Uni2Det. The multi-stage prompting modules are
employed as the core component to make the detection more unified and universal.

3.1 Preliminary

In the realm of 3D object detection, the task involves analyzing an input frame of LiDAR points to
predict associated labels, including categories and orientated bounding boxes. Training an object
detection model F with its parameter Θ on a single dataset typically involves a straightforward
approach: minimizing the 3D detection loss ℓ over a set of point clouds x and its corresponding
ground truth y from the dataset D:

min
Θ

E(x,y)∈D [ℓ(F(x; Θ), y)] . (1)

Suppose that a dataset is characterized by a joint probability distribution PXY over the input point
cloud and label space X × Y . In the scope of multi-dataset training (MDT), we possess N datasets
{Di}Ni=1 originating from diverse domains. Each Di is linked to a distinct data distribution P i

XY .
The goal of MDT is to utilize multiple labeled datasets for training a unified model F : X → Y ,
aiming for increased generalizability and minimized prediction errors across various domains. One
straightforward strategy entails merging all datasets into a substantially larger one, denoted as
Dmerge = D1 ∪ D2 ∪ · · · ∪ DN . While datasets may feature distinct label spaces, our training and
evaluation are limited to categories relevant to autonomous driving scenarios: vehicle, pedestrian,
and cyclist. Consequently, the label space Y can be shared across various domains. This approach
optimizes the same loss function over the expanded dataset Dmerge:

min
Θ

E(x,y)∈Dmerge
[ℓ(F(x; Θ), y)] (2)

In the following sections, we present the design of our Uni2Det and show how to train a 3D perception
model that performs well on seen datasets and generalizes to unseen datasets.

3.2 Prompt for voxelization: point distribution correction

To address data-level discrepancies in large-scale annotated 3D LiDAR datasets, we aim to develop
simple modules during voxelization. These modules will enable existing 3D detectors to learn
universal point and voxel representations across diverse datasets, as shown in Figure 3(a).

Point representation learning Instead of relying on coordinates as point features, certain studies
have explored effective methods of fusing information from various viewpoints. This is achieved
through a learnable network incorporating a linear layer and batch normalization. However, in
this approach, the batch normalization process does not account for MDF training scheme, where
points within the batch come from frames in various datasets having large statistic differences. To
address this, we introduce a new normalization approach termed “Mean-shifted batch normalization”
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Figure 3: Illustration of multi-stage prompting modules, including three modules for prompting
different components of the detector.

to perform instance-level feature correction. Compatible with any 3D detectors, this method can
alleviate statistical differences in features extracted by standard 2D or 3D backbones.

Mean-shifted batch normalization After the linear layer, we obtain a batch of point features
represented as P = {p11, p12, ..., pij , ..., pMNM

} from M frames. Here, pij denotes the j-th point
feature, and Ni represents the total number of points in the i-th frame. Conventional BN carries
out normalization across all frames (instances) under the assumption that all data follows the same
distribution. However, two frames may exhibit disparate point ranges due to the different sensors in
use and even if they come from the same sensor, the distribution of points may still be highly random.
To address this, under the MDF setting, we argue that instance-level statistics are also crucial and
introduce mean-shifted batch normalization. Subsequently, samples from each dataset are regularized
using the basic mean µ with an adjustment from the current instance-specific mean µi, as follows:

p̂ij =
pij − αµi − (1− α)µ

√
σ + ϵ

, (3)

where µ and σ denote the channel-wise mean and variance of the feature set P , which are employed
for conventional channel-wise feature normalization to ensure the input data conforms to zero-mean
and unit-variance, and ϵ is added to ensure numerical stability. Here we maintain the sharing of
variance σ. α ∈ [0, 1] is a balancing ratio for the shifted mean. When α = 0, it is equivalent to
performing the regular BN operation, while α = 1, the normalization procedure disregards the basic
mean and relies solely on instance-level statistics. The subsequent transformation step for p̂ij remains
the same as in conventional batch normalization. This approach allows us to learn universal point and
voxel representations across diverse datasets with instance-level statistics as regularization.

3.3 Prompt for backbone: BEV-based range masking

In the realm of modeling point clouds in MDF setting, learning unified features from diverse sources
and domains poses a significant challenge due to variations in the point range and data distribution
across different datasets. To address this challenge, we introduce BEV-based range masking acting
on BEV features to effectively handle point clouds from different datasets, as shown in Figure 3(b).

Given the preconfigured point range (x1, y1, x2, y2) for producing BEV features with an aligned
coordinate system, where x1 < x2, y1 < y2, we can infer a binary mask for each dataset based on its
point range. The purpose of this mask is to explicitly indicate whether the regions or grids on the
BEV plane are inside the point range of the frame. Suppose H and W are the spatial shape of the
BEV plane, and (xi

1, y
i
1, x

i
2, y

i
2) is the point range of the i-th dataset. We naturally map this point

range to the BEV plane based on the preconfigured point range according to the following equation:

xi
1

′
= ⌊ (x

i
1 − x1)

x2 − x1
H⌋, yi1

′
= ⌊ (y

i
1 − y1)

y2 − y1
W ⌋, xi

2

′
= ⌈ (x

i
2 − x1)

x2 − x1
H⌉, yi2

′
= ⌈ (y

i
2 − y1)

y2 − y1
W ⌉. (4)
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Having the mapped point range on the BEV plane (xi
1
′
, yi1

′
, xi

2
′
, yi2

′
), we can obtain mask M i ∈

RH×W for the i-th dataset by:

M i
m,n =

{
1 if xi

1

′ ≤ m ≤ xi
2

′
, yi1

′ ≤ n ≤ yi2
′

0 if others.
(5)

Given a frame of point clouds from the i-th dataset, our approach concatenates BEV features with the
corresponding masks M i along the feature dimension before each 2D convolutional layer. Leveraging
this prior signal, the network can effectively adapt to point clouds from various datasets, which avoids
excessive focus on the area outside the relevant regions, thereby maintaining the integrity of crucial
information. This integration provides a solution for the unified backbone to model features across
datasets, which not only preserves dataset-specific information but also enhances the robustness and
adaptability of feature modeling.

3.4 Prompt for head: object-conditional residual learning

The prompting modules in previous stages facilitate the framework to become more ‘unified’. On the
other hand, learning a general detection head is crucial in designing a ‘universal’ framework. Since
previous works use multiple dataset-specific detection heads for prediction, such designs cannot be
directly transferred to new datasets and therefore cannot be considered universal. In this section, we
explore the potential of a universal detection head for predicting point clouds from diverse domains
without dataset-specific branches. However, directly training a detection head on multiple datasets
poses challenges. As noted in previous works, the same category exhibits statistical differences across
datasets, motivating us to design prompts to mitigate the distribution gap. Consequently, we introduce
object-level residual learning, inspired by [28], on RoI features, integrating them from pre-trained
heads with new knowledge about the target domain, as shown in Figure 3(c). Instead of learning a set
of object-agnostic task residuals, we argue that learning object-conditional residuals is more effective
and transferable to unseen domains as prompts.

Given a batch of RoI features X = {xi}Ni=1 from frames of different datasets and their labels
Y = {yi}Ni=1, where yi = j if feature xi is from a frame of the j-th dataset, we feed each RoI
feature xi into a residual function f to obtain object-conditional residual ri. The generation process is
formulated as ri = f(SG(xi)), where SG indicates the stop-gradient operation to prevent hindering
the regular learning of RoI features. Since the generated residuals should be relevant to the domain
or dataset to which the feature belongs, we design a discriminator D, implemented by an MLP,
to distinguish these residuals, using the dataset ID as a prior label. The discrimination process is
formulated as ŷi = D(ri). We use the cross-entropy loss to measure the discrimination loss Ldis

between the predicted label set Ŷ = {ŷi}Ni=1 and the ground truth label set Y , which is further added
to the regular detection loss Ldet as the final loss. By learning such object-conditional residuals,
we can enhance the original RoI feature with prior dataset-specific characteristics by x̂i = xi + ri,
and models will tend to make predictions according to a specific distribution, thus mitigating the
influence of statistical differences in taxonomy across datasets.

4 Experiments

4.1 Experimental setup

Datasets Our experiments are conducted on three commonly used autonomous driving datasets:
Waymo [15], nuScenes [1], and KITTI [5]. Waymo [15] stands out as the largest dataset with over
230,000 annotated 64-beam LiDAR frames gathered from six US cities. nuScenes [1] comprises
28,130 training samples and 6,019 validation samples collected using 32-beam LiDAR. KITTI [5]
includes 7,481 annotated LiDAR frames collected via 64-beam LiDAR. These datasets exhibit
variations in data-level distributions arising from disparities in LiDAR types, geographic location of
data acquisition, and variations in the definition of categorical annotations.

Implementation details The experiments are conducted using OpenPCDet [16]. Particularly, we
note that differences in point cloud range significantly degrade cross-dataset detection accuracy.
Therefore, we align the point cloud range of all datasets to [75.2, 75.2]m for the X and Y axes and
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Table 1: Results of joint training on Waymo and nuScenes datasets. Following Uni3D [29], we report
the car (Vehicle on Waymo), pedestrian, and cyclist results under IoU threshold of 0.7, 0.5, and 0.5,
respectively, and utilize AP and APH of LEVEL 1 metric on Waymo, and APBEV and AP3D over 40
recall positions on nuScenes. P.T. indicates pre-training the baseline detector on the other dataset,
and fine-tune the detector on the current dataset. The best detection results are marked using bold.

Trained on Method
Tested on Waymo Tested on nuScenes

Vehicle Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP
Baseline Detectors: Voxel-RCNN

Waymo
w/o P.T. 75.08/74.60 75.17/68.76 65.28/64.33 71.84/69.23 34.10/17.31 2.99/1.69 0.05/0.01 12.38/6.34
w/ P.T. 75.46/74.99 74.58/68.06 65.92/64.98 71.99/69.34 34.34/21.95 2.84/1.57 0.09/0.02 12.42/7.85

nuScenes
w/o P.T. 36.77/36.50 4.64/3.18 2.49/2.45 14.63/14.04 53.63/39.05 22.47/17.85 10.86/9.70 28.99/22.08
w/ P.T. 6.11/5.90 0.77/0.56 0.01/0.01 2.30/2.16 55.23/39.14 23.65/16.47 8.51/5.80 29.13/20.47

Both W&N
D.M. 66.67/66.23 60.36/54.08 52.03/51.25 59.69/57.19 51.40/31.68 15.04/9.99 5.40/3.87 23.95/15.18

Uni3D 75.26/74.77 75.46/68.75 65.02/63.12 71.91/68.88 60.18/42.23 30.08/24.37 14.60/12.32 34.95/26.31
Uni2Det 76.13/75.66 77.27/71.84 66.40/65.46 73.27/70.99 60.26/41.84 31.17/25.31 17.17/14.42 36.20/27.19

Baseline Detectors: PV-RCNN

Waymo
w/o P.T. 74.97/74.46 73.41/66.57 64.58/63.49 70.99/68.17 32.99/17.55 3.34/1.94 0.02/0.01 12.12/19.50
w/ P.T. 74.77/74.26 73.32/66.31 64.06/63.05 70.72/67.87 33.86/17.47 2.88/1.53 0.04/0.01 12.26/6.34

nuScenes
w/o P.T. 41.01/40.58 4.57/2.96 0.98/0.95 15.52/14.83 57.78/41.10 24.52/18.56 10.24/8.25 30.85/22.64
w/ P.T. 44.59/44.24 7.67/6.33 8.77/8.58 20.34/19.72 57.92/41.53 24.32/17.31 11.52/9.19 31.25/22.68

Both W&N
D.M. 66.22/65.75 55.41/49.29 56.50/55.48 59.38/56.84 48.67/30.43 12.66/8.12 1.67/1.04 21.00/13.20

Uni3D 75.54/74.90 74.12/66.90 63.28/62.12 70.98/67.97 60.77/42.66 27.44/21.85 13.50/11.87 33.90/25.46
Uni2Det 76.03/75.53 76.24/70.29 64.97/63.95 72.41/69.92 61.38/42.76 28.60/22.49 15.10/12.90 35.03/26.05

Table 2: Results of joint training on KITTI and nuScenes datasets. The experiment and evaluation
settings follow Table 1.

Trained on Method
Tested on KITTI Tested on nuScenes

Car Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP
Baseline Detectors: Voxel-RCNN

KITTI
w/o P.T. 89.34/80.91 59.67/56.88 61.10/60.49 70.04/66.09 11.37/4.64 0.15/0.11 0.01/0.00 3.84/1.58
w/ P.T. 89.90/81.25 59.49/56.17 54.55/54.15 67.98/63.86 12.89/5.52 0.24/0.18 0.05/0.03 4.39/1.91

nuScenes
w/o P.T. 69.41/33.48 28.06/19.20 0.44/0.43 32.64/17.70 53.63/39.05 22.47/17.85 10.86/9.70 28.99/22.20
w/ P.T. 71.61/40.64 39.67/29.99 7.29/6.88 39.52/25.84 53.57/39.65 24.93/21.17 11.42/9.95 29.97/23.59

Both K&N
D.M. 89.24/73.72 61.03/54.55 62.71/59.92 70.99/62.73 41.88/20.48 12.58/8.32 1.77/0.97 18.74/9.92

Uni3D 90.09/83.10 62.99/58.30 70.20/68.10 74.43/69.83 59.25/41.51 29.12/23.18 15.16/13.16 34.51/25.95
Uni2Det 90.60/84.16 68.40/64.47 68.74/65.68 75.91/71.44 58.09/39.68 31.10/25.83 20.56/17.53 36.58/27.68

Baseline Detectors: PV-RCNN

KITTI
w/o P.T. 89.41/83.15 59.09/54.73 62.25/61.71 70.25/66.53 6.58/2.54 0.22/0.16 0.03/0.01 2.28/0.90
w/ P.T. 89.26/83.14 60.56/55.90 63.60/62.88 71.14/67.31 13.43/5.61 0.69/0.27 0.04/0.00 4.72/1.96

nuScenes
w/o P.T. 74.37/36.54 39.30/29.07 0.58/0.55 38.08/25.47 57.78/41.10 24.52/18.56 10.24/8.25 30.85/22.64
w/ P.T. 69.40/38.25 33.24/24.88 1.68/1.61 34.77/21.58 53.24/36.72 20.65/17.09 8.95/7.58 27.61/20.46

Both K&N
D.M. 87.79/77.95 55.52/48.29 59.15/55.10 67.49/60.45 41.29/21.57 10.21/7.08 1.23/1.15 17.58/9.93

Uni3D 89.77/85.49 60.03/55.58 69.03/66.10 72.94/69.06 59.08/41.67 25.27/19.26 12.26/10.83 32.20/23.92
Uni2Det 90.52/85.36 61.73/58.53 71.76/69.29 74.67/71.06 58.30/41.21 29.11/24.00 12.62/10.93 33.34/25.38

[2, 4]m for the Z-axis following Uni3D [29]. In all experimental settings, we employ the standard
optimization techniques utilized by PV-RCNN [12] and VoxelRCNN [4]. For the balancing ratio α in
our voxelization, we set α = 0.1 for VoxelRCNN and α = 0.5 for PV-RCNN. This involves using
Adam optimizer with an initial learning rate of 0.01 and implementing the OneCycle learning rate
decay strategy. The network is trained across 8 NVIDIA A800 GPUs, with a total training epoch set
to 30. The weight decay is set to 0.01, while for the remaining experiments, it is set to 0.001. We
utilize only 20% of the uniformly sampled frames on Waymo dataset for model training.

Evaluation metric. We utilize the official evaluation tools to evaluate the performance of all
baselines and our method, following [29]. For the Waymo dataset, we use Average Precision (AP)
and Average Precision re-weighted by Heading (APH) for each class, based on the LEVEL 1 metric.
For the KITTI and nuScenes datasets, we report Average Precision (AP) in both Bird’s Eye View
(BEV) and 3D over 40 recall positions, with moderate case results for KITTI. AP is evaluated with
an IoU threshold of 0.7 for the car category (Vehicle on Waymo) and 0.5 for pedestrian and cyclist
categories. All experimental results presented in this paper are reported on the official validation set.
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Table 3: Results of joint training on KITTI and Waymo datasets. The experiment and evaluation
settings follow Table 1.

Trained on Method
Tested on KITTI Tested on Waymo

Car Pedestrian Cyclist mAP Vehicle Pedestrian Cyclist mAP
Baseline Detectors: Voxel-RCNN

KITTI
w/o P.T. 89.34/80.91 59.67/56.88 61.10/60.49 70.04/66.09 6.81/6.75 16.52/13.65 14.74/14.00 12.69/11.47
w/ P.T. 89.51/81.41 60.30/57.10 55.53/51.34 68.45/63.28 8.70/8.62 19.14/16.01 21.87/20.83 16.57/15.15

Waymo
w/o P.T. 67.07/19.80 65.44/61.92 59.48/54.10 64.00/45.27 75.08/74.60 75.17/68.76 65.28/64.33 71.82/69.23
w/ P.T. 64.84/19.99 62.58/59.01 56.44/49.43 61.29/42.81 72.76/72.26 72.42/64.94 63.27/62.23 69.48/66.48

Both K&W
D.M. 74.53/32.11 60.11/54.85 59.69/55.94 64.78/47.63 74.35/73.85 74.80/68.39 64.87/63.95 71.34/68.73

Uni3D 90.03/82.39 62.51/57.01 69.52/66.30 74.02/68.57 74.83/74.33 74.79/68.24 66.83/65.82 72.15/69.46
Uni2Det 90.30/84.23 64.30/61.03 71.15/69.18 75.25/71.48 75.35/74.77 76.64/71.22 67.03/65.73 73.01/70.57

Baseline Detectors: PV-RCNN

KITTI
w/o P.T. 89.41/83.15 59.09/54.73 62.25/61.71 70.25/66.53 2.98/2.94 7.99/6.56 5.84/5.54 5.60/5.01
w/ P.T. 89.40/83.42 62.69/58.86 59.96/59.43 70.68/67.24 8.75/8.64 12.12/9.90 9.20/8.76 10.02/6.10

Waymo
w/o P.T. 56.20/54.81 60.04/57.06 54.29/50.05 56.84/53.97 74.97/74.46 73.41/66.57 64.58/63.49 70.99/68.17
w/ P.T. 69.25/25.91 59.16/55.92 56.09/50.50 61.50/44.11 71.08/70.54 70.12/62.91 62.37/61.40 67.86/64.95

Both K&W
D.M. 87.49/68.35 62.84/60.06 68.09/65.75 72.81/64.72 50.68/50.31 58.76/52.59 55.14/54.17 54.86/52.36

Uni3D 89.42/83.15 60.85/57.49 71.61/65.88 73.96/68.84 75.07/74.54 72.95/66.08 63.80/62.92 70.61/67.85
Uni2Det 90.70/84.65 61.02/58.33 72.86/71.26 74.86/71.41 75.43/74.92 74.96/69.20 65.57/64.49 71.99/69.54

Table 4: Results of zero-shot evaluation on unseen datasets. Source Only denotes that the model is
trained on the source domain and directly tested on the target domain. S.H. for Uni3D [29] indicates
using a single head instead of dataset-specific heads as a variant. Results are reported for Car category.

Single-Source Generalization Dual-Source Generalization

Method
Waymo → KITTI

Method
Waymo + nuScenes → KITTI

Detector mAP Detector mAP
Source Only PV-RCNN 61.18 / 22.01 Data Merging PV-RCNN 69.07 / 36.17
SN PV-RCNN 69.92 / 60.17 Data Merging (w/ SN) PV-RCNN 72.43 / 59.91
Uni2Det (w/ SN) PV-RCNN 72.41 / 63.96 Uni3D PV-RCNN 71.46 / 37.83
Source Only Voxel-RCNN 64.88 / 19.90 Uni3D (w/ M.H) PV-RCNN 71.79 / 38.82
SN Voxel-RCNN 75.83 / 55.50 Uni3D (w/ S.H., SN) PV-RCNN 73.48 / 60.51
Uni2Det (w/ SN) Voxel-RCNN 76.34 / 57.85 Uni2Det PV-RCNN 72.39 / 40.12

Method
nuScenes → KITTI Uni2Det (w/ SN) PV-RCNN 75.57 / 64.09

Detector mAP Data Merging Voxel-RCNN 69.02 / 36.57
Source Only PV-RCNN 68.15 / 37.17 Data Merging (w/ SN) Voxel-RCNN 72.32 / 52.94
SN PV-RCNN 60.48 / 49.47 Uni3D Voxel-RCNN 72.68 / 39.65
Uni2Det (w/ SN) PV-RCNN 66.75 / 55.43 Uni3D (w/ M.H) Voxel-RCNN 73.12 / 40.57
Source Only Voxel-RCNN 69.41 / 33.48 Uni3D (w/ S.H., SN) Voxel-RCNN 75.69 / 53.46
SN Voxel-RCNN 67.05 / 48.06 Uni2Det Voxel-RCNN 74.07 / 43.76
Uni2Det (w/ SN) Voxel-RCNN 71.02 / 50.94 Uni2Det (w/ SN) Voxel-RCNN 78.63 / 58.24

4.2 Results of multi-dataset 3D object detection

To evaluate the unified design of our framework, we conduct experiments on the two-dataset combi-
nation of three widely-used autonomous driving datasets: Waymo [15], KITTI [5], and nuScenes [1],
and report our results from Table 1 to 3 with comparison to baselines demonstrated in [29]. We
summarize our findings and conclusions as three points.

Firstly, performance improvement from multi-dataset training is guaranteed for Uni2Det. In some
cases, the previous state-of-the-art Uni3D shows worse results under multi-dataset training than when
trained on a single dataset (e.g., results on Waymo under Waymo-nuScenes consolidation), indicating
that Uni3D did not fully and effectively utilize data from multiple datasets for training. In contrast,
our Uni2Det avoids this issue and ensures improved performance with additional datasets for training,
demonstrating excellent scalability.

Secondly, a dataset-agnostic head is feasible instead of dataset-specific head. Although the improved
results of Uni3D compared to simply merging datasets demonstrate the benefits of learning dataset-
specific detection heads, our work addresses the poor performance issue with a single detection
head through a unified paradigm, proving the feasibility of learning a dataset-agnostic detection
head. Using more training data from different datasets to train a single detection head in our unified
paradigm is more likely to enhance detection performance.
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Table 5: Results of jointly training the Voxel-
RCNN on three datasets.

Trained on Tested on
KITTI NuScenes Waymo Avg.

KITTI 70.04/66.09 3.84/1.58 12.69/11.47 28.86/26.38
nuScenes 32.64/17.70 28.99/22.20 14.63/14.04 25.42/17.98
Waymo 64.00/45.27 12.38/6.34 71.84/69.23 49.41/40.28
Uni3D 72.19/67.46 35.06/26.48 71.95/69.28 59.73/54.41

Uni2Det 76.04/72.61 34.03/25.44 72.45/70.20 60.84/56.08

Table 6: Ablation study of prompts in different
stages of Uni2Det based on Voxel-RCNN.

Method Voxelization Backbone Head KITTI Waymo

Baseline 72.73/69.94 71.09/69.12

Ours

✓ 73.84/70.56 71.71/69.73
✓ 73.65/70.39 71.63/69.56

✓ 73.41/70.47 71.53/69.47
✓ ✓ 74.96/70.95 72.29/69.93
✓ ✓ ✓ 75.25/71.48 73.01/70.57

Lastly, Uni2Det is considered a more robust and unified framework for multi-dataset training. Across
all dataset combinations, our Uni2Det consistently outperforms Uni3D, demonstrating the effective-
ness of our approach in a multi-dataset setting. This result also indicates that our unified training
paradigm is stable and robust, capable of converting point cloud data from any source domains
or datasets into a more unified distribution through prompts for better prediction. However, our
method shows lower AP when inferring some categories (e.g., results for Car on nuScenes under
KITTI-nuScenes consolidation). Despite this, considering the boost from other categories within the
dataset, it maintains an overall improvement across each dataset.

4.3 Results of zero-shot evaluation on unseen datasets

To evaluate the universal design of our framework, we conduct zero-shot evaluation on unseen 3D
datasets using different detectors. We compare Uni2Det with Source Only and a strong generalization
baseline, SN [19], under the single-source generalization, as well as with simple data merging and
Uni3D with its variants under the dual-source generalization. We also attempt to integrate SN into
our method with extra statistical supervision on the target domain. As shown in Table 4, our Uni2Det
is proved to achieve more generalized representations on a single dataset as well, further enhancing
performance based on SN. This is because our universal framework effectively utilizes the prior
information associated with target datasets so as to perform better adaptation. For the dual-source
generalization, we discover that using a single detection head on Uni3D exhibits better generalization
performance compared to using multiple detection heads, indicating that training the detection head
on multiple domains can enhance generalization to some extent and prevent over-fitting to any single
domain. Based on this finding, our proposed Uni2Det leverages multi-stage prompts for more unified
and universal training, further improving zero-shot generalization performance while ensuring the
performance advantage on in-domain data. By comparing the overall results, we validate that Uni2Det
significantly improves the generalization performance when incorporating new datasets.

4.4 Further analysis

Results on Waymo-KITTI-nuScenes Consolidations. Table 5 shows the results of jointly training
Voxel-RCNN on Waymo-KITTI-nuScenes consolidations. We report average AP over all categories
within the dataset. Our Uni2Det demonstrates high detection results on KITTI and Waymo, on which
the results of Uni3D do not differ much from those on the single dataset. Overall, more balanced and
consistent boosts on different datasets can be observed in Uni2Det on average APBEV and AP3D.

Ablation on prompts in different stages. We investigate the influence of prompts in different
stages of Uni2Det, including voxelization, backbone, and head. The evaluation setting follows Table 5.
As shown in Table 6, the prompt modules implemented at each stage enhance performance compared
to the baseline. Notably, the point distribution correction at the voxelization stage shows the most
significant improvement among all stages. This demonstrates that learning unified low-level point
features is crucial for MDF and serves as a foundation for subsequent prompting stages. We also
observe that gradually adding prompts stage-by-stage results in noticeable performance gains for
each stage, reflecting the complementarity between the prompting modules. At last, using prompts
from all stages together achieves a significant improvement compared to the baseline.
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5 Conclusion

We introduce Uni2Det, a novel framework designed for unified and universal multi-dataset training
in 3D detection which utilizes multi-stage prompting modules to harmonize differences between
datasets by leveraging dataset-specific characteristics, ensuring robust performance across various
domains and effective generalization to new domains. Our work is promising to enhance performance
across various domains and facilitate effective generalization to new ones in 3D detection, which has
the potential to advance fields like autonomous driving.

Limitation. We reveal the limitation that our approach relies on the identical set of categories
within different datasets, which hinders the detection on different label spaces with more diverse
categories, and hope that future research based on our work will advance unified and universal 3D
detection to be more inclusive and effective across a broader range of applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction provide a clear and concise overview of the
paper’s key contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of the work in the section of conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information needed and also provide implementation details
for reproducing the main experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The paper provides the code in supplemental material with sufficient instruc-
tions to faithfully reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the implementation details for reproducing and understanding
the main experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not report error bars due to the huge amount of computation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses societal impacts in the section of conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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